1. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.
doi:10.1016/j.optmat.2016.12.005 Google Scholar
2. Soltani, O., J. Zaghdoudi, and M. Kanzari, "Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films," Physica B: Condensed Matter, Vol. 538, 62-69, 2018.
doi:10.1016/j.physb.2018.03.017 Google Scholar
3. Asmi, R., N. Ben Ali, and M. Kanzari, "Numerical investigation of light localization in generalized Thue-Morse one-dimensional photonic crystal," Journal of Photonics for Energy, Vol. 6, 034501, 2016.
doi:10.1117/1.JPE.6.034501 Google Scholar
4. Trabelsi, Y., N. Ben Ali, Y. Bouazzi, and M. Kanzari, "Microwave transmission through one-dimensional hybrid quasi-regular (Fibonacci and Thue-Morse)/periodic structures," Photonic Sensors, Vol. 3, 246-255, 2013.
doi:10.1007/s13320-013-0114-7 Google Scholar
5. Lu, T. W., C. C. Wu, C. Wang, and P. T. Lee, "Compressible 1D photonic crystal nanolasers with wide wavelength tuning," Optics Letters, Vol. 42, 2267-2270, 2017.
doi:10.1364/OL.42.002267 Google Scholar
6. Soltani, O., J. Zaghdoudi, and M. Kanzari, "High quality factor polychromatic filters based on hybrid photonic structures," Chinese Journal of Physics, Vol. 56, 2479-2487, 2018.
doi:10.1016/j.cjph.2018.05.025 Google Scholar
7. Jena, S., R. B. Tokas, S. Thakur, and D. V. Udupa, "Tunable mirrors and filters in 1D photonic crystals containing polymers," Physica E: Low-dimensional Systems and Nanostructures, Vol. 114, 113627, 2019.
doi:10.1016/j.physe.2019.113627 Google Scholar
8. Habli, O., Y. Bouazzi, and M. Kanzari, "Gas sensing using one-dimensional photonic crystal nanoresonators," Progress In Electromagnetics Research, Vol. 92, 251-263, 2019.
doi:10.2528/PIERC19011106 Google Scholar
9. Patermò, G. M., L. Moscardi, S. Donini, D. Ariodanti, I. Kriegel, M. Zani, E. Parisini, F. Scotognella, and G. Lanzani, "Hybrid one-dimensional plasmonic-photonic crystals for optical detection of bacterial contaminants," The Journal of Physical Chemistry Letters, Vol. 10, 4980-4986, 2019.
doi:10.1021/acs.jpclett.9b01612 Google Scholar
10. Konopsky, V. N., E. V. Alieva, S. Y. Alyatkin, A. A. Melnikov, S. V. Chekalin, and V. M. Agranovich, "Phase-matched third-harmonic generation via doubly resonant optical surface modes in 1D photonic crystals," Light: Science & Applications, Vol. 5, e16168-e16168, 2016.
doi:10.1038/lsa.2016.168 Google Scholar
11. McMillan, J. F., M. Yu, D. L. Kwong, and C. W. Wong, "Observation of four-wave mixing in slow-light silicon photonic crystal waveguides," Optics Express, Vol. 18, 15484-15497, 2010.
doi:10.1364/OE.18.015484 Google Scholar
12. Zhao, D., Z. Wang, H. Long, K. Wang, B. Wang, and P. X. Lu, "Optical bistability in defective photonic multilayers doped by graphene," Optical and Quantum Electronics, Vol. 49, 163, 2017.
doi:10.1007/s11082-017-0999-2 Google Scholar
13. Fernando, M. G. and K. Wijewardena Gamalath, "Nonlinear optical properties of photonic crystals," World Scientific News, Vol. 97, 1-27, 2018. Google Scholar
14. Boyd, R. W., Nonlinear Optics, Academic Press, 2019.
15. Soon, B. Y., W. Haus, M. Scalora, and C. Sibilia, "One-dimensional photonic crystal optical limiter," Optics Express, Vol. 11, 2007-2018, 2003.
doi:10.1364/OE.11.002007 Google Scholar
16. Koroteev, N. I., S. A. Magnitskii, A. V. Tarasishin, et al. "Compression of ultrashort light pulses in photonic crystals: When envelopes cease to be slow," Optics Commun., Vol. 159, 191-202, 1999.
doi:10.1016/S0030-4018(98)00571-9 Google Scholar
17. Shi, W., M. Shi, and X. Ma, "Tunable CdS/TiO2 all-optical switches with defect layers," Emerging Materials Research, Vol. 8, 123-126, 2019.
doi:10.1680/jemmr.16.00133 Google Scholar
18. Zohrabi, R. and A. Namdar, "Perfect tunable all-optical diode based on periodic photonic crystal grand graded structures," Journal of Optical Communications, Vol. 40, 187-193, 2019.
doi:10.1515/joc-2017-0080 Google Scholar
19. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/AlGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102 Google Scholar
20. Samuel, E. P. and D. S. Patil, "Effect of aluminum mole fraction and well width on the probability density spreading in GaN/AlGaN quantum well," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 8, 394, 2007. Google Scholar
21. Talele, K., E. P. Samuel, and D. S. Patil, "Investigation of near field intensity in GaN MQW in 300-375 nanometer wavelength ranges," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1122-1130, 2008.
doi:10.1163/156939308784158823 Google Scholar
22. Abelès, F., "Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés-Application aux couches minces," Annales de Physique. EDP Sciences, Vol. 12, 596-640, 1950.
doi:10.1051/anphys/195012050596 Google Scholar
23. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Investigation of the 1D symmetrical linear graded superconductor-dielectric photonic crystals and its potential applications as an optimized low temperature sensors," Optical Materials, Vol. 64, 147-151, 2017.
doi:10.1016/j.optmat.2016.12.005 Google Scholar
24. Trabelsi, Y., N. Ben Ali, and M. Kanzari, "Tunable narrowband optical filters using superconductor/dielectric generalized Thue-Morse photonic crystals," Microelectronic Engineering, Vol. 213, 41-46, 2019.
doi:10.1016/j.mee.2019.04.016 Google Scholar
25. Zaghdoudi, J. and M. Kanzari, "One-dimensional photonic crystal filter using a gradient-index layer," Optik, Vol. 160, 189-196, 2018.
doi:10.1016/j.ijleo.2018.01.129 Google Scholar
26. Zaghdoudi, J., M. Kanzari, and B. Rezig, "Design of omnidirectional asymmetrical high reflectors for optical telecommunication wavelengths," The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 42, 181-186, 2004.
doi:10.1140/epjb/e2004-00370-y Google Scholar
27. Zhukovsky, S. V. and A. G. Smirnov, "All-optical diode action in asymmetric nonlinear photonic multilayers with perfect transmission resonances," Physical Review A, Vol. 83, 023818, 2011.
doi:10.1103/PhysRevA.83.023818 Google Scholar
28. Jamshidi-Ghaleh, K., Z. Safari, and R. Tanavar, "Enhancement of photonic crystal all-optical diode efficiency with a subwavelength layer," Acta Physica Polonica, A, Vol. 123, 212-214, 2013.
doi:10.12693/APhysPolA.123.212 Google Scholar
29. Baraket, Z., J. Zaghdoudi, and M. Kanzari, "Study of optical responses in hybrid symmetrical quasi-periodic photonic crystals," Progress In Electromagnetics Research, Vol. 46, 29-37, 2016.
doi:10.2528/PIERM15112902 Google Scholar
30. Peng, R. W., X. Q. Huang, F. Qiu, et al. "Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers," Applied Physics Letters, Vol. 80, 3063-3065, 2002.
doi:10.1063/1.1468895 Google Scholar
31. Mauriz, P. W., M. S. Vasconcelos, and E. L. Albuquerque, "Optical transmission spectra in symmetrical Fibonacci photonic multilayers," Physics Letters A, Vol. 373, 496-500, 2009.
doi:10.1016/j.physleta.2008.11.041 Google Scholar
32. Entezar, S. R. and R. Vatannejad, "1D graded thickness nonlinear structure as an optical diode," Journal of Nonlinear Optical Physics & Materials, Vol. 25, 1650030, 2016.
doi:10.1142/S0218863516500302 Google Scholar
33. Zhukovsky, S. V., "Perfect transmission and highly asymmetric light localization in photonic multilayers," Physical Review A, Vol. 81, 053808, 2010.
doi:10.1103/PhysRevA.81.053808 Google Scholar
34. Namdar, A. and F. Ebadi-Garjan, "All-optical diode action in quasiperiodic fibonacci nanostructures," Acta Physica Polonica A, Vol. 123, 45-47, 2013.
doi:10.12693/APhysPolA.123.45 Google Scholar
35. Grigoriev, V. V. and F. Biancalana, "Bistability and stationary gap solitons in quasiperiodic photonic crystals based on Thue-Morse sequence," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, 285-290, 2010.
doi:10.1016/j.photonics.2010.05.002 Google Scholar
36. Maksymov, I. S., L. F. Marsal, and J. Pallares, "Finite-difference time-domain analysis of band structures in one-dimensional Kerr-nonlinear photonic crystals," Optics Communications, Vol. 239, 213-222, 2004.
doi:10.1016/j.optcom.2004.05.022 Google Scholar
37. Bhargava, A. and B. Suthar, "Optical switching in kerr nonlinear chalcogenide photonic crystal," Journal of Ovonic Research, Vol. 5, 2009. Google Scholar
38. Meng, Z. M., Y. H. Hu, C. Wang, X. L. Zhong, W. Ding, and Z. Y. Li, "Design of high-Q silicon-polymer hybrid photonic crystal nanobeammicrocavities for low-power and ultrafast all-optical switching," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, 83-92, 2014.
doi:10.1016/j.photonics.2013.08.003 Google Scholar
39. Scalora, M., J. P. Dowling, C. M. Bowden, and M. J. Bloemer, "Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials," Physical review Letters, Vol. 73, 1368, 1994.
doi:10.1103/PhysRevLett.73.1368 Google Scholar
40. Kumar, A., V. Kumar, B. Suthar, et al. "Nonlinear transmission and reflection characteristics of plasma/polystyrene one dimensional photonic crystal," Optik, Vol. 125, 393-396, 2014.
doi:10.1016/j.ijleo.2013.06.090 Google Scholar
41. Moslemi, F. and K. Jamshidi-Ghaleh, "Electrically tunable optical bistability based on one-dimensional photonic crystals with nonlinear nanocomposite materials," Journal of Applied Physics, Vol. 119, 093101, 2016.
doi:10.1063/1.4942866 Google Scholar
42. Tran, P., "Optical switching with a nonlinear photonic crystal: A numerical study," Optics Letters, Vol. 21, 1138-1140, 1996.
doi:10.1364/OL.21.001138 Google Scholar