Vol. 107
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-22
A Compact MIMO Antenna with Electromagnetic Bandgap Structure for Isolation Enhancement
By
Progress In Electromagnetics Research C, Vol. 107, 233-244, 2021
Abstract
In this paper, a compact MIMO antenna with an electromagnetic bandgap structure is proposed for isolation enhancement. The proposed antenna design is coupled with an electromagnetic bandgap (EBG) structure to minimize mutual coupling between the antenna elements and to enhance the performance of the MIMO antenna configuration. The antenna is fabricated on an FR4 substrate having a dimension of (27.9×38×1.6 mm3). The EBG structure is analyzed, and the effect on antenna performance is studied using parametric analysis. The antenna is fabricated, and the measured results are compared with simulated ones. The antenna achieves a reduction in transmission coefficient |S21| ≥ 16 dB for simulated and |S21| ≥ 25 dB for measured results, and attains the minimum ECC of 0.09 which is very close to the ideal value of zero and hence makes it a better choice for MIMO applications.
Citation
Ravichandran Sanmugasundaram, Somasundaram Natarajan, and Rengasamy Rajkumar, "A Compact MIMO Antenna with Electromagnetic Bandgap Structure for Isolation Enhancement," Progress In Electromagnetics Research C, Vol. 107, 233-244, 2021.
doi:10.2528/PIERC20111306
References

1. Chen, Z., J. Hong, and Y. Deng, "Reduction of mutual coupling in UWB-MIMO antennas by using EBG structures based on a T-shaped ground branch," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Guangzhou, China, 2019.

2. Radhi, A. H., N. A. Aziz, R. Nilavalan, and H. S. Al-Raweshidy, "Mutual coupling reduction between two PIFA using uni-planar fractal based EBG for MIMO application," 2016 Loughborough Antennas & Propagation Conference (LAPC), 1-5, Loughborough, 2016.

3. Dabas, T., D. Gangwar, B. Kumar Kanaujia, and A. K. Gautam, "Mutual coupling reduction between elements of UWB MIMO antenna using small size uniplanar EBG exhibiting multiple stop bands," AEU — International Journal of Electronics and Communications, Vol. 93, 32-38, 2018.
doi:10.1016/j.aeue.2018.05.033

4. Mohamadzade, B., A. Lalbakhsh, R. B. V. B. Simorangkir, A. Rezaee, and R. M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020.
doi:10.2528/PIERM19100703

5. Sokunbi, O., H. Attia, and S. I. Sheikh, "Microstrip antenna array with reduced mutual coupling using slotted-ring EBG structure for 5G applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1185-1186, Atlanta, GA, USA, 2019.

6. Prabhu, P. and S. Malarvizhi, "Novel double-side EBG based mutual coupling reduction for compact quad port UWB MIMO antenna," AEU — International Journal of Electronics and Communications, Vol. 109, 146-156, 2019.
doi:10.1016/j.aeue.2019.06.010

7. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "Mutual coupling reduction in patch antenna using Electromagnetic Band Gap (EBG) structure for IoT application," 2018 International Conference on Communication Information and Computing Technology (ICCICT), 1-4, Mumbai, 2018.

8. Babu, K. V., B. Anuradha, and K. C. Bhushana Rao, "Reduction of mutual coupling by desegregated with EBG structure for microstrip antenna array radar applications," 2016 International Conference on Signal Processing, Communication, Power and Embedded System, 317-320, Paralakhemundi, 2016.

9. Ambika, A. and C. Tharini, "Semicircle CSRR with circular slot array structures for high level mutual coupling reduction in MIMO antenna," Progress In Electromagnetics Research M, Vol. 87, 23-32, 2019.
doi:10.2528/PIERM19091001

10. Hao, H. C., J. Zhang, and X. Sun, "The deployment of stub structures for mutual coupling reduction in MIMO antenna applications," Progress In Electromagnetics Research Letters, Vol. 92, 39-45, 2020.
doi:10.2528/PIERL19102101

11. Nguyen, N. L., "Gain enhancement in MIMO antennas using defected ground structure," Progress In Electromagnetics Research M, Vol. 87, 127-136, 2019.
doi:10.2528/PIERM19091102

12. Sharma, K. and G. P. Pandey, "Two port compact MIMO antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 100, 173-185, 2020.
doi:10.2528/PIERC20011504

13. El Ouahabi, M., A. Zakriti, M. Essaaidi, A. Dkiouak, and E. Hanae, "A miniaturized dual-band MIMO antenna with low mutual coupling for wireless applications," Progress In Electromagnetics Research C, Vol. 93, 93-101, 2019.
doi:10.2528/PIERC19032601

14. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, Dec. 2006.
doi:10.1002/dac.784

15. Yu, K., X. Liu, and Y. Li, "Mutual coupling reduction of microstrip patch antenna array using modified split ring resonator metamaterial structures," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2287-2288, San Diego, CA, 2017.

16. Vishvaksenan, K. S., K. Mithra, R. Kalaiarasan, and K. S. Raj, "Mutual coupling reduction in microstrip patch antenna arrays using parallel coupled-line resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2146-2149, 2017.
doi:10.1109/LAWP.2017.2700521

17. Ghosh, J., S. Ghosal, D. Mitra, and S. R. Bhadra Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.
doi:10.2528/PIERL16012202

18. Hwangbo, S., H. Y. Yang, and Y. Yoon, "Mutual coupling reduction using micromachined complementary meander-line slots for a patch array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1667-1670, 2017.
doi:10.1109/LAWP.2017.2663114

19. Zhang, J., L. Wang, and W. Zhang, "A novel dual band-notched CPW-fed UWB MIMO antenna with mutual coupling reduction characteristics," Progress In Electromagnetics Research Letters, Vol. 90, 21-28, 2020.
doi:10.2528/PIERL19122703

20. Gao, D., Z.-X. Cao, S.-D. Fu, X. Quan, and P. Chen, "A novel slot-array defected ground structure for decoupling microstrip antenna array," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 10, 7027-7038, Oct. 2020.
doi:10.1109/TAP.2020.2992881

21. Ghosh, A., A. Mitra, and S. Das, "Meander line-based low profile RIS with defected ground and its use in patch antenna miniaturization for wireless applications," Microwave and Optical Technology Letters, Vol. 59, 732-738, 2017.
doi:10.1002/mop.30384

22. Chen, Z., M. Tang, Y. Wang, M. Li, and D. Li, "Mutual coupling reduction using planar parasitic resonators for wideband, dual-polarized, high-density patch arrays," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, 2019.

23. Cheng, Y., X. Ding, W. Shao, and B. Wang, "Reduction of mutual coupling between patch antennas using a polarization-conversion isolator," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1257-1260, 2017.
doi:10.1109/LAWP.2016.2631621

24. Addepalli, T. and V. R. Anitha, "A very compact and closely spaced circular shaped UWB MIMO antenna with improved isolation," AEU — International Journal of Electronics and Communications, Vol. 114, 153016, Feb. 2020.
doi:10.1016/j.aeue.2019.153016