1. Katz, A., J. Wood, and D. Chokola, "The evolution of PA linearization: From classic feedforward and feedback through analog and digital predistortion," IEEE Microwave Magazine, Vol. 17, No. 2, 32-40, Feb. 2016.
doi:10.1109/MMM.2015.2498079 Google Scholar
2. Andreoli, S., H. G. McClure, P. Banelli, and S. Cacopardi, "Digital linearizer for RF amplifiers," IEEE Transactions on Broadcasting, Vol. 43, No. 1, 12-19, Mar. 1997.
doi:10.1109/11.566819 Google Scholar
3. Vassiliou, I., K. Vavelidis, T. Georgantas, S. Plevridis, N. Haralabidis, G. Kamoulakos, C. Kapnistis, S. Kavadias, Y. Kokolakis, P. Merakos, J. C. Rudell, A. Yamanaka, S. Bouras, and I. Bouras, "A single-chip digitally calibrated 5.15 ∼ 5.825-GHz 0.18-μm CMOS transceiver for 802.11a wireless LAN," IEEE Journal of Solid-State Circuits, Vol. 38, No. 12, 2221-2231, Dec. 2003.
doi:10.1109/JSSC.2003.819086 Google Scholar
4. Grebennikov, A. and S. Bulja, "High-efficiency doherty power amplifiers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3190-3219, Dec. 2012.
doi:10.1109/JPROC.2012.2211091 Google Scholar
5. Katz, A., "Linearization: Reducing distortion in power amplifiers," IEEE Microwave Magazine, Vol. 2, No. 4, 37-49, 2001.
doi:10.1109/6668.969934 Google Scholar
6. Gokceoglu, A., A. ghadam, and M. Valkama, "Steady-state performance analysis and step-size selection for LMS-adaptive wideband feedforward power amplifier linearizer," IEEE Transactions on Signal Processing, Vol. 60, No. 1, 82-99, Jan. 2012.
doi:10.1109/TSP.2011.2169254 Google Scholar
7. Ghadam, A., S. Burglechner, A. H. Gokceoglu, M. Valkama, and A. Springer, "Implementation and performance of DSP-oriented feedforward power amplifier linearizer," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 59, No. 2, 409-425, Feb. 2012.
doi:10.1109/TCSI.2011.2163890 Google Scholar
8. Pipilos, S., Y. Papananos, N. Naskas, M. Zervakis, J. Jongsma, T. Gschier, N. Wilson, J. Gibbins, B. Carter, and G. Dann, "A transmitter IC for TETRA systems based on a Cartesian feedback loop linearization technique," IEEE Journal of Solid-State Circuits, Vol. 40, No. 3, 707-718, Mar. 2005.
doi:10.1109/JSSC.2005.843633 Google Scholar
9. Kim, J. H. and C. S. Park, "A feedback technique to compensate for AM-PM distortion in linear CMOS class-F power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 10, 725-727, Oct. 2014.
doi:10.1109/LMWC.2014.2341040 Google Scholar
10. Kang, S., E.-T. Sung, and S. Hong, "Dynamic feedback linearizer of RF CMOS power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 10, 915-917, Oct. 2018.
doi:10.1109/LMWC.2018.2861881 Google Scholar
11. Abbasnezhad, F., M. Tayarani, A. Abrishamifar, and V. Nayyeri, "A simple and adjustable technique for effective linearization of power amplifiers using harmonic injection," IEEE Access, Vol. 9, 37287-37296, Mar. 2021.
doi:10.1109/ACCESS.2021.3063286 Google Scholar
12. Yamauchi, K., K. Mori, M. Nakayama, Y. Mitsui, and T. Takagi, "A microwave miniaturized linearizer using a parallel diode with a bias feed resistance," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2431-2435, Dec. 1997.
doi:10.1109/22.643856 Google Scholar
13. Deng, H., D. Zhang, D. Lv, D. Zhou, and Y. Zhang, "A tunable reflective analog predistorter based on variable impedance matching network," AEU — International Journal of Electronics and Communications, Vol. 98, 139-143, Jan. 2019.
doi:10.1016/j.aeue.2018.11.012 Google Scholar
14. Chen, X., D. Zhou, J. Xu, and L. Yang, "Predistortion linearization of a Ku-band TWTA for communication applications," Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Mar. 2013. Google Scholar
15. Zhou, R., X. Xie, B. Yan, and S. Li, "A novel diode-based predistortion linearizer for Ka-band power amplifier," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), May 2012. Google Scholar
16. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609 Google Scholar
17. Bian, C., D. Zhang, H. Deng, Q. Liu, D. Lv, Y. Zhang, and D. Zhou, "Complete analysis and design for a Q/V band (46–52 GHz) wideband analog predistorter," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 2, Dec. 2020. Google Scholar
18. Bera, S. C., P. S. Bhardhwaj, R. V. Singh, and V. K. Garg, "A diode linearizer for microwave power amplifiers," Microwave Journal, Vol. 46, No. 11, 102-113, Nov. 2003. Google Scholar
19. Hu, X., G. Wang, Z.-C. Wang, and J.-R. Luo, "Predistortion linearization of an X-band TWTA for communications applications," IEEE Transactions on Electron Devices, Vol. 58, No. 6, 1768-1774, Jun. 2011.
doi:10.1109/TED.2011.2128321 Google Scholar
20. Deng, H., D. Zhang, D. Lv, D. Zhou, and Y. Zhang, "Analog predistortion linearizer with independently tunable gain and phase conversions for Ka-band TWTA," IEEE Transactions on Electron Devices, Vol. 66, No. 3, 1533-1539, Mar. 2019.
doi:10.1109/TED.2018.2890696 Google Scholar
21. Tripathi, G. C. and M. Rawat, "RFin-RFout linearizer system design for satellite communication," IEEE Transactions on Electron Devices, Vol. 65, No. 6, 2378-2384, Jun. 2018.
doi:10.1109/TED.2018.2791558 Google Scholar
22. Guan, N., N. Wu, and H. Wang, "Digital predistortion of wideband power amplifier with single undersampling ADC," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 11, 1016-1018, Nov. 2017.
doi:10.1109/LMWC.2017.2750059 Google Scholar
23. Liu, X., Q. Zhang, W. Chen, H. Feng, L. Chen, F. M. Ghannouchi, and Z. Feng, "Beam-oriented digital predistortion for 5G massive MIMO hybrid beamforming transmitters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3419-3432, Jul. 2018.
doi:10.1109/TMTT.2018.2830772 Google Scholar
24. Zhao, J., C. Yu, J. Yu, Y. Liu, and S. Li, "A robust augmented combination of digital predistortion and crest factor reduction for RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 57, 181-191, 2015.
doi:10.2528/PIERC15032306 Google Scholar
25. Hu, X., Z. Liu, W. Wang, M. Helaoui, and F. M. Ghannouchi, "Low-feedback sampling rate digital predistortion using deep neural network for wideband wireless transmitters," IEEE Transactions on Communications, Vol. 68, No. 4, 2621-2633, Apr. 2020.
doi:10.1109/TCOMM.2020.2966718 Google Scholar
26. Ciminski, A. S., "Neural network based adaptable control method for linearization of high power amplifiers," AEU — International Journal of Electronics and Communications, Vol. 59, No. 4, 239-243, Jun. 2005.
doi:10.1016/j.aeue.2004.11.026 Google Scholar
27. Rawat, M., K. Rawat, and F. M. Ghannouchi, "Adaptive digital predistortion of wireless power amplifiers/transmitters using dynamic real-valued focused time-delay line neural networks," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 95-104, Jan. 2010.
doi:10.1109/TMTT.2009.2036334 Google Scholar
28. GraciaSaez, R. and N. Medrano Marques, "RF power amplifier linearization in professional mobile radio communications using artificial neural networks," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 3060-3070, Apr. 2019.
doi:10.1109/TIE.2018.2842780 Google Scholar
29. Pozar, D. M., Microwave Engineering, Wiley, 2005.
30. Lopez, D., J.-F. Villemazet, D. Geffroy, J.-L. Cazaux, G. Mouchon, J. Maynard, M. Perrel, and M. Amarouali, "Ka band power limiter for satellite channel amplifier," 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Nov. 2009. Google Scholar
31. Bera, S. C., K. Basak, V. K. Jain, R. V. Singh, and V. K. Garg, "Schottky diode-based microwave limiter with adjustable threshold power level," Microwave and Optical Technology Letters, Vol. 52, No. 7, 1671-1673, Jul. 2010.
doi:10.1002/mop.25255 Google Scholar
32. Maas, S. A., Nonlinear Microwave Circuit, Artech House, 1988.