1. Ali, M., F. Liu, A.Watanabe, P. M. Raj, V. Sundaram, M. M. Tentzeris, and R. R. Tummala, "First demonstration of compact, ultra-thin low-pass and bandpass filters for 5g small-cell applications," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 12, 1110-1112, 2018.
doi:10.1109/LMWC.2018.2876769 Google Scholar
2. Bhat, Z. A., J. A. Sheikh, R. Rehman, S. A. Parrah, M. U. Amin, and S. D. Khan, "Compact microstrip bandpass filter using stepped-impedance resonators and stepped-lumped resonators for 5G Wi-Fi and WLAN applications," 2019 International Conference on Power Electronics, Control and Automation (ICPECA), 1-4, IEEE, November 2019. Google Scholar
3. Dong, K., J. Mo, Y. He, Z. Ma, and X. Yang, "Design of a millimeter-wave dual-band bandpass filter using SIW dual-mode cavities," 2016 IEEE MTT-S International Wireless Symposium (IWS), 1-3, IEEE, March 2016. Google Scholar
4. Sofi, I. B. and A. Gupta, "A survey on energy efficient 5G green network with a planned multi-tier architecture," Journal of Network and Computer Applications, Vol. 118, 1-28, 2018.
doi:10.1016/j.jnca.2018.06.002 Google Scholar
5. Tharani, D., R. K. Barik, Q. S. Cheng, K. Selvajyothi, and S. S. Karthikeyan, "Compact dual-band SIW filters loaded with double ring D-shaped resonators for sub-6GHz applications," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 3, 1-14, 2020. Google Scholar
6. Dong, Y. and T. Itoh, "Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators," 2011 IEEE MTT-S International Microwave Symposium, 1-4, IEEE, June 2011. Google Scholar
7. Senior, D. E., X. Cheng, M. Machado, and Y. K. Yoon, "Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, IEEE, July 2010. Google Scholar
8. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2211-2223, 2009.
doi:10.1109/TMTT.2009.2027156 Google Scholar
9. Chen, X. P., K. Wu, and Z. L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasi-elliptic responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2569-2578, 2007.
doi:10.1109/TMTT.2007.909603 Google Scholar
10. Miao, M. and C. Nguyen, "A novel multilayer aperture-coupled cavity resonator for millimeterwave CMOS RFICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 4, 783-787, 2007.
doi:10.1109/TMTT.2007.892817 Google Scholar
11. Wang, J., Y. Guan, H. Yu, N. Li, S. Wang, C. Shen, and G. Zhang, "Transparent graphene microstrip filters for wireless communications," Journal of Physics D: Applied Physics, Vol. 50, No. 34, 34LT01, 2017.
doi:10.1088/1361-6463/aa7c99 Google Scholar
12. Liu, L., Q. Fu, F. Liang, and S. Zhao, "Dual-band filter based on air-filled SIW cavity for 5G application," Microwave and Optical Technology Letters, Vol. 61, No. 11, 2599-2606, 2019.
doi:10.1002/mop.31935 Google Scholar
13. Rogla, L. J., J. Carbonell, and V. E. Boria, "Study of equivalent circuits for open-ring and split-ring resonators in coplanar waveguide technology," IET Microwaves, Antennas & Propagation, Vol. 1, No. 1, 170-176, 2007.
doi:10.1049/iet-map:20050340 Google Scholar
14. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965 Google Scholar
15. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.
doi:10.2528/PIER12110411 Google Scholar
16. Chen, R. S., S. W. Wong, L. Zhu, and Q. X. Chu, "Wideband bandpass filter using U-slotted Substrate Integrated Waveguide (SIW) cavities," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 1, 1-3, 2014.
doi:10.1109/LMWC.2014.2363291 Google Scholar
17. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965 Google Scholar
18. Yoon, J. S., J. G. Kim, J. S. Park, C. S. Park, J. B. Lim, H. G. Cho, and K. Y. Kang, "A new DGS resonator and its application to bandpass filter design," 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535), Vol. 3, 1605-1608, IEEE, June 2004.
doi:10.1109/MWSYM.2004.1338889 Google Scholar
19. Bhat, Z., J. Sheikh, S. Khan, R. Rehman, and S. Ashraf, "Compact and novel coupled line microstrip bandpass filter based on stepped impedance resonators for millimetre-wave communications," Frequenz, 2021, https://doi.org/10.1515/freq-2020-0156. Google Scholar
20. Li, Y., L. A. Yang, L. Du, K. Zhang, and Y. Hao, "Design of millimeter-wave resonant cavity and filter using 3-D substrate-integrated circular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 8, 706-708, 2017.
doi:10.1109/LMWC.2017.2723942 Google Scholar
21. Shen, G., W. Che, and Q. Xue, "Compact microwave and millimeter-wave bandpass filters using LTCC-based hybrid lumped and distributed resonators," IEEE Access, Vol. 7, 104797-104809, 2019.
doi:10.1109/ACCESS.2019.2931765 Google Scholar
22. Li, J., Y. Huang, H. Wang, P. Wang, and G. Wen, "38-GHz SIW filter based on the steppedimpedance face-to-face E-shaped DGSs for 5G application," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1500-1504, 2019.
doi:10.1002/mop.31799 Google Scholar
23. Parment, F., A. Ghiotto, T. P. Vuong, J. M. Duchamp, and K. Wu, "Ka-band compact and highperformance bandpass filter based on multilayer air-filled SIW," Electronics Letters, Vol. 53, No. 7, 486-488, 2017.
doi:10.1049/el.2016.4399 Google Scholar