1. Cao, R. W., C. Mi, and M. Cheng, "Quantitative comparison of flux-switching permanent-magnet motors with interior permanent magnet motor for EV, HEV, and PHEV applications," IEEE Transactions on Magnetics, Vol. 48, No. 68, 2374-2384, 2012.
doi:10.1109/TMAG.2012.2190614 Google Scholar
2. Kakosimos, P. E., A. G. Sarigiannidis, M. E. Beniakar, A. G. Kladas, and C. Gerada, "Induction motors versus permanent-magnet actuators for aerospace applications," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 4315-4325, 2014.
doi:10.1109/TIE.2013.2274425 Google Scholar
3. Yang, Y. Y., S. M. Castano, R. Yang, M. Kasprzak, B. Bilgin, A. Sathyan, H. Dadkhah, and A. Emadi, "Design and comparison of interior permanent magnet motor topologies for traction applications," IEEE Transactions on Transportation Electrification, Vol. 3, No. 1, 86-97, 2017.
doi:10.1109/TTE.2016.2614972 Google Scholar
4. Yang, Z., F. Shang, I. P. Brown, and M. Krishnamurthy, "Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications," IEEE Transactions on Transportation Electrification, Vol. 1, No. 3, 245-254, 2015.
doi:10.1109/TTE.2015.2470092 Google Scholar
5. Jang, J., M. Humza, and B. Kim, "Design of a variable-flux permanent-magnet synchronous motor for adjustable-speed operation," IEEE Transactions on Industry Applications, Vol. 52, No. 4, 2996-3004, 2016.
doi:10.1109/TIA.2016.2547986 Google Scholar
6. Kim, K.-C., "A novel magnetic flux weakening method of permanent magnet synchronous motor for electric vehicles," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4042-4045, 2012.
doi:10.1109/TMAG.2012.2198444 Google Scholar
7. Kohara, A., K. Hirata, N. Niguchi, and Y. Ohno, "Finite-element analysis and experiment of current superimposition variable flux machine using permanent magnet," IEEE Transactions on Magnetics, Vol. 52, No. 9, 18-25, 2016.
doi:10.1109/TMAG.2016.2572659 Google Scholar
8. Kato, T., N. Limsuwan, C. Y. Yu, K. Akatsu, and R. D. Lorenz, "Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1748-1756, 2014.
doi:10.1109/TIA.2013.2283314 Google Scholar
9. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534 Google Scholar
10. Zhu, X. Y., W. Y. Wu, S. Yang, Z. X. Xiang, and L. Quan, "Comparative Design and analysis of new type of flux-intensifying interior permanent magnet motors with different q-axis rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2260-2269, 2018.
doi:10.1109/TEC.2018.2837119 Google Scholar
11. Hua, H., Z. Q. Zhu, A. Pride, R. Deodhar, and T. Sasaki, "Comparative study on variable flux memory machines with parallel or series hybrid magnets," IEEE Transactions on Industry Applications, Vol. 55, No. 2, 1408-1419, 2019.
doi:10.1109/TIA.2018.2879858 Google Scholar
12. Hua, H., Z. Q. Zhu, A. Pride, R. P. Deodhar, T. Sasaki, and , "A novel variable flux memory machine with series hybrid magnets," IEEE Transactions on Industry Applications, Vol. 53, No. 5, 4396-4405, 2017.
doi:10.1109/TIA.2017.2709261 Google Scholar
13. Liu, F. L., L. M. Cheng, M. Q. Wang, G. Y. Qiao, P. Zheng, and H. Yang, "Comparative study of hybrid-PM variable-flux machines with different series PM configurations," AIP Advances, Vol. 9, No. 12, 321-332, 2019. Google Scholar
14. Elloumi, N., M. Bortolozzi, A. Masmoudi, M. Mezzarobba, M. Olivo, and A. Tessarolo, "Numerical and analytical approaches to the modeling of a spoke type IPM machine with enhanced flux weakening capability," IEEE Transactions on Industry Applications, Vol. 55, No. 5, 4702-4714, 2019.
doi:10.1109/TIA.2019.2924857 Google Scholar
15. Liu, X., T. Sun, Y. Zou, C. Huang, and J. Liang, "Modelling and analysis of a novel mechanical-variable-flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 11, 2171-2178, 2020.
doi:10.1049/iet-epa.2020.0171 Google Scholar
16. Tessarolo, A., M. Mezzarobba, and R. Menis, "Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability," IEEE Transactions on Magnetics, Vol. 51, No. 4, 1-10, 2015. Google Scholar
17. Aoyama, M. and T. Noguchi, "Study and experimental performance evaluation of flux intensifying PM motor with variable leakage magnetic flux," Electrical Engineering In Japan, Vol. 207, No. 4, 36-54, 2019.
doi:10.1002/eej.23162 Google Scholar
18. Kato, T., M. Minowa, H. Hijikata, K. Akatsu, and R. D. Lorenz, "Design methodology for variable leakage flux IPM for automobile traction drives," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3811-3821, 2015.
doi:10.1109/TIA.2015.2439642 Google Scholar
19. Kusase, S. and K. Kurihara, "A proposal for a new variable leakage flux motor with interpolar gap and permanent magnets," IEEJ Journal of Industry Applications, Vol. 6, No. 6, 381-386, 2017.
doi:10.1541/ieejjia.6.381 Google Scholar
20. Wang, A., Y. Jia, and W. L. Soong, "Comparison of five topologies for an interior permanent-magnet machine for a hybrid electric vehicle," IEEE Transactions on Magnetics, Vol. 47, No. 10, 3606-3609, 2011.
doi:10.1109/TMAG.2011.2157097 Google Scholar
21. Ma, Y., T. W. Ching, W. N. Fu, and S. Niu, "Multi-objective optimization of a direct-drive dual-structure permanent magnet machine," IEEE Transactions on Magnetics, Vol. 55, No. 10, 1-4, 2019.
doi:10.1109/TMAG.2019.2922475 Google Scholar
22. Asef, P., R. B. Perpina, M. R. Barzegaran, A. Lapthorn, and D. Mewes, "Multiobjective design optimization using dual-level response surface methodology and Booth’s Algorithm for permanent magnet synchronous generators," IEEE Transactions on Energy Conversion, Vol. 33, No. 2, 652-659, 2018.
doi:10.1109/TEC.2017.2777397 Google Scholar
23. Nakata, T., M. Sanada, S. Morimoto, and Y. Inoue, "Automatic design of IPMSMs using a genetic algorithm combined with the coarse-mesh FEM for enlarging the high-efficiency operation area," IEEE Transactions on Industrial Electronics, Vol. 64, No. 12, 9721-9728, 2017.
doi:10.1109/TIE.2017.2714133 Google Scholar