Vol. 100
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-09-07
A Compact and Narrowband Displaced Substrate Integrated E-Plane Waveguide (SIEW) Junctions Filter
By
Progress In Electromagnetics Research Letters, Vol. 100, 19-25, 2021
Abstract
Substrate integrated E-plane waveguide (SIEW) was invented recently to design E-plane waveguide devices on printed circuit board, which cannot be achieved by using the conventional substrate integrated waveguide (SIW). This paper is the first time to present an E-plane displaced SIEW junctions bandpass filter. The proposed design is shorter than the recently published SIEW septa filter and has a smaller footprint than several other SIW filters. It is designed by mapping an equivalent E-plane waveguide filter to its SIEW implementation. A filter prototype is built and measured for validation.
Citation
Danyang Huang, Xuan Hui Wu, and Qun Zhang, "A Compact and Narrowband Displaced Substrate Integrated E-Plane Waveguide (SIEW) Junctions Filter," Progress In Electromagnetics Research Letters, Vol. 100, 19-25, 2021.
doi:10.2528/PIERL21060102
References

1. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 5, 625-630, May 1998.
doi:10.1109/8.668903        Google Scholar

2. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide lters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 593-596, February 2003.
doi:10.1109/TMTT.2002.807820        Google Scholar

3. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 66-73, January 2005.
doi:10.1109/TMTT.2004.839303        Google Scholar

4. Deslandes, D. and K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2516-2526, June 2006.
doi:10.1109/TMTT.2006.875807        Google Scholar

5. Chen, X.-P., K. Wu, and D. Drolet, "Substrate integrated waveguide lter with improved stopband performance for satellite ground terminal," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 3, 674-683, March 2009.
doi:10.1109/TMTT.2009.2013316        Google Scholar

6. Xiao, Y., P. Shan, Y. Zhao, H. Sun, and F. Yang, "Design of a W-band GAAS-based SIW chip lter using higher order mode resonances," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 104-106, 2019.
doi:10.1109/LMWC.2018.2890265        Google Scholar

7. Sun, L., H. Deng, Y. Xue, J. Zhu, and S. Xing, "Compact-balanced BPF and ltering crossover with intrinsic common-mode suppression using single-layered SIW cavity," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 2, 144-147, 2020.
doi:10.1109/LMWC.2020.2965530        Google Scholar

8. Liu, Q., D. Zhou, Y. Zhang, D. Zhang, and D. Lv, "Substrate integrated waveguide bandpass lters in box-like topology with bypass and direct couplings in diagonal cross-coupling path," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 3, 1014-1022, 2019.
doi:10.1109/TMTT.2018.2889450        Google Scholar

9. Che, W., L. Xu, L. Geng, and D. Wang, "The propagation characteristics of double-layer substrate integrated waveguide (SIW) structure," 2006 Asia-Paci c Microwave Conference, 1392-1394, 2006.        Google Scholar

10. Abdel-Wahab, W. M. and S. Safavi-Naeini, "Low loss double-layer substrate integrated waveguide- hybrid branch line coupler for mm-wave antenna arrays," 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2074-2076, 2011.
doi:10.1109/APS.2011.5996917        Google Scholar

11. Luo, P., W. He, Y. Zhang, H. Liu, E. Forsberg, and S. He, "Leaky-wave antenna with wide scanning range based on double-layer substrate integrated waveguide," IEEE Access, Vol. 8, 199899-199908, 2020.
doi:10.1109/ACCESS.2020.3035505        Google Scholar

12. Huang, D., X. H. Wu, and Q. Zhang, "Concept of substrate integrated E-plane waveguide and waveguide filter," 2016 International Workshop on Antenna Technology (iWAT), 196-199, February 2016.
doi:10.1109/IWAT.2016.7434841        Google Scholar

13. Hedin, M., D. Huang, X. H. Wu, and Q. Zhang, "Substrate integrated E-plane waveguide (SIEW) to design E-plane and dual polarized devices," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1844-1853, March 2019.
doi:10.1109/TAP.2018.2885459        Google Scholar

14. Gu, Z., D. Huang, X. H. Wu, and Q. Zhang, "Substrate intergrated E-plane horn antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1555-1556, June 2016.        Google Scholar

15. Gu, Z., X. H. Wu, and Q. Zhang, "Substrate-integrated E-plane waveguide horn antenna and antenna array," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2382-2391, May 2018.
doi:10.1109/TAP.2018.2814201        Google Scholar

16. Akunuru, V. N. K. R. and X. H.Wu, "Excitation of circularly polarized wave in substrate integrated E-plane waveguide," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1777-1778, 2019.        Google Scholar

17. Kuhn, E., "Microwave bandpass lters consisting of rectangular waveguides with 1-dimensional offsets," Int. J. Circ. Theor. App., Vol. 6, No. 1, 13-29, January 1978.
doi:10.1002/cta.4490060104        Google Scholar

18. Sargent, G. A., "Re ection coefficients of offset rectangular waveguides at 56 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 23, No. 3, 246-247, September 1974.
doi:10.1109/TIM.1974.4314273        Google Scholar

19. Levy, R., "Re ection coefficient of unequal displaced rectangular waveguides (letters)," IEEE Transactions on Microwave Theory and Techniques, Vol. 24, No. 7, 480-483, July 1976.
doi:10.1109/TMTT.1976.1128879        Google Scholar

20. Lerer, A. M., V. P. Lyapin, and G. P. Sinyavskii, "Displacements of rectangular waveguides," Radiophys. Quantum Electron., Vol. 25, 671-678, January 1982.
doi:10.1007/BF01034941        Google Scholar

21. Hunter, J. D., "The displaced rectangular waveguide junction and its use as an adjustable reference reflection," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 4, 387-394, April 1984.
doi:10.1109/TMTT.1984.1132687        Google Scholar

22. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House Books, Artech House Microwave Library, 1980.