1. Thide, B., et al. "Utilization of photon orbital angular momentum in the low-frequency radio domai," Phys. Rev. Lett., Vol. 99, No. 8, Art. no. 087701, Aug. 2007.
doi:10.1103/PhysRevLett.99.087701 Google Scholar
2. Hell, S. W., "Toward fluorescence nanoscopy," Nature Biotechnol., Vol. 21, 1347-1355, Oct. 2003. Google Scholar
3. Harwit, M., "Photon orbital angular momentum in astrophysics," Astrophys. J., Vol. 597, 1266-1270, Nov. 2003. Google Scholar
4. Leach, J., B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, "Quantum correlations in optical angle-orbital angular momentum variables," Science, Vol. 329, 662-665, Aug. 2010.
doi:10.1126/science.1190523 Google Scholar
5. Paterson, C., "Atmospheric turbulence and orbital angular momentum of single photons for optical communication," Phys. Rev. Lett., Vol. 94, Art. no. 153901, Apr. 2005. Google Scholar
6. Shapiro, J., S. Guha, and B. Erkmen, "Ultimate channel capacity of free-space optical communications," J. Opt. Netw., Vol. 4, No. 8, 501-516, 2005.
doi:10.1364/JON.4.000501 Google Scholar
7. Wang, J., J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, "Terabit free-space data transmission employing orbital angular momentum multiplexing," Nature Photon., Vol. 6, 488-496, Jun. 2012.
doi:10.1038/nphoton.2012.138 Google Scholar
8. Bai, X., X. Liang, R. Jin, and J. Geng, "Generation of OAM radio waves with three polarizations using circular horn antenna array," Proc. 9th Eur. Conf. Antennas Propag. (EuCAP), 1-4, Apr. 2015. Google Scholar
9. Hui, X., et al. "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas Wireless Propag. Lett., Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431 Google Scholar
10. Byun, W.-J., Y.-S. Lee, B. S. Kim, K. S. Kim, M. S. Kang, and Y. H. Cho, "Simple generation of orbital angular momentum modes with azimuthally deformed cassegrain subreflector," Electron. Lett., Vol. 51, No. 19, 1480-1482, 2015.
doi:10.1049/el.2015.1833 Google Scholar
11. Bai, Q., A. Tennant, and B. Allen, "Experimental circular phased arrayfor generating OAM radio beams," Electron. Lett., Vol. 50, No. 20, 1414-1415, Sep. 2014.
doi:10.1049/el.2014.2860 Google Scholar
12. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001 Google Scholar
13. Yan, Y., et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876 Google Scholar
14. Xue, W., X. Chen, X. Liu, X. Meng, A. Zhang, and W. E. I. Sha, "A revisit of orbital angular momentum multiplexing in multipath environment," Journal of Communications and Information Networks, Vol. 5, No. 4, 438-446, Dec. 2020. Google Scholar
15. Huang, H.-F. and S.-N. Li, "Single-layer dual-frequency unit for multifunction OAM reflectarray applications at the microwave range," Opt. Lett., Vol. 45, No. 18, 5165-5168, 2020.
doi:10.1364/OL.398463 Google Scholar
16. Li, W., L. Zhang, S. Yang, K. Zhuo, L. Ye, and Q. H. Liu, "A reconfigurable second-order OAM patch antenna with simple structure," IEEE Antennas Wireless Propag. Lett., Vol. 19, No. 9, 1531-1535, Sep. 2020.
doi:10.1109/LAWP.2020.3008447 Google Scholar
17. Allen, B., et al. "Reduction of orbital angular momentum radio beam divergence using a 3D printed planar graded index lenses," Proc. 12th Eur. Conf. Antennas Propag. (EuCAP), 1-3, London, U.K., 2018. Google Scholar
18. Li, F., et al. "Generation and focusing of orbital angular momentum based on polarized reflectarray at microwave frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 3, 1829-1837, Mar. 2021.
doi:10.1109/TMTT.2020.3040449 Google Scholar
19. Wu, G.-B., K. F. Chan, and C. H. Chan, "3-D printed terahertz lens to generate higher-order Bessel beams carrying OAM," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3399-3408, Jun. 2021.
doi:10.1109/TAP.2020.3030915 Google Scholar
20. Yao, Y., X. Liang, R. Jin, and J. Geng, "Analysis of focusing orbital angular momentum wave using Fabry-Perot cavity," Journal of Communications and Information Networks, Vol. 4, No. 3, 9-17, Sept. 2019. Google Scholar
21. Bai, X., "Rotman lens-fed Fabry-Perot resonator antennas for generating converged multi-mode OAM beams," IEEE Access, Vol. 7, 105768-105775, 2019.
doi:10.1109/ACCESS.2019.2932199 Google Scholar
22. Wei, W. L., K. Mahdjoubi, C. Brousseau, O. Emile, and A. Sharaiha, "Enhancement of directivity of an OAM antenna by using Fabry-Perot cavity," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, Davos, 2016. Google Scholar
23. Bai, X., Y. Sun, P. Hu, J. Chen, W. Yan, X. Liang, C. He, J. Geng, and R. Jin, "Improvement on the multi-mode beams divergence of OAM array by using Fabry-Perot cavity," Proc. IEEE Int. Symp. Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 2193-2194, IEEE, San Diego, CA, USA, Jul. 2017. Google Scholar
24. Ma, L., C. Chen, L. Zhou, S. Jiang, and H. Zhang, "Single-layer transmissive metasurface for generating OAM vortex wave with homogeneous radiation based on the principle of Fabry-Perot cavity," Appl. Phys. Lett., Vol. 114, No. 8, Art. no. 081603, 2019. Google Scholar
25. Lian, R., Z. Tang, and Y. Yin, "Design of a broadband polarization reconfigurable Fabry-Perot resonator antenna," IEEE Antennas Wireless. Propag. Lett., Vol. 17, No. 1, 122-125, Jan. 2018.
doi:10.1109/LAWP.2017.2777502 Google Scholar