Vol. 105
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-10-01
High-Sensitive Mid-Infrared Photonic Crystal Sensor Using Slotted-Waveguide Coupled-Cavity
By
Progress In Electromagnetics Research M, Vol. 105, 45-54, 2021
Abstract
In this paper, a novel high-sensitive mid-infrared photonic crystal-based slotted-waveguide coupled-cavity sensor to behave as a refractive index sensing device is proposed at mid-infrared wavelength of 3.9 µm. We determine the sensitivity of our sensor by detecting the shift in the resonance wavelength as a function of the refractive index variations in the region around the cavity. Comparison between mid-infrared photonic crystal-based slotted-waveguide coupled-cavity with mid-infrared photonic crystal-based slotted-waveguide shows a higher sensitivity to refractive index changes. The sensitivity can be improved from 938 nm/per refractive index unit (RIU) to 1161 nm/RIU within the range of n = 1 - 1.05 with an increment of 0.01 RIU in the wavelength range of 3.3651 µm to 4.1198 µm by creating a microcavity within the proposed structure, calculated quality factor (Q-factor) of 1.0821 x 107 giving a sensor figure of merit (FOM) up to 2.917 x 106, and a low detection limit of 3.9 × 10-6 RIU. Furthermore, an overall sensitivity is calculated to be around S = 1343.2 nm/RIU for the case of higher refractive indices of analytes within the range of n = 1 - 1.2 with an increment of 0.05 RIU. The described work and the achieved results by performing 2D-finite-difference time-domain (2D-FDTD) simulations confirm the capability to realize a commercially viable miniaturized and highly sensitive mid-infrared photonic crystal based slotted-waveguide coupled cavity sensor.
Citation
Hadjira Tayoub, Abdesselam Hocini, and Ahlam Harhouz, "High-Sensitive Mid-Infrared Photonic Crystal Sensor Using Slotted-Waveguide Coupled-Cavity," Progress In Electromagnetics Research M, Vol. 105, 45-54, 2021.
doi:10.2528/PIERM21071207
References

1. Ge, X., Y. Shi, and S. He, "Ultra-compact channel drop filter based on photonic crystal nanobeam cavities utilizing a resonant tunneling effect," Opt. Lett., Vol. 39, 6973, 2014.        Google Scholar

2. Lin, C., H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, R. T. Chen, C. Lin, H. Subbaraman, A. Hosseini, A. X. Wang, L. Zhu, and R. T. Chen, "Silicon nanomembrane based photonic crystal waveguide array for wavelength-tunable true-time-delay lines," Appl. Phys. Lett., Vol. 051101, 1, 2012.        Google Scholar

3. Gao, Y., R. Shiue, X. Gan, L. Li, C. Peng, I. Meric, L. Wang, A. Szep, D. Walker, J. Hone, and D. Englund, "High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity," Nano Lett., 2015.        Google Scholar

4. Harhouz, A., A. Hocini, and H. Tayoub, "Ultracompact gas-sensor based on a 2D photonic crystal waveguide incorporating with tapered microcavity," IOP Conf. Ser. Mater. Sci. Eng., Vol. 1046, 012001, 2021.        Google Scholar

5. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.        Google Scholar

6. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.        Google Scholar

7. Zou, Y., S. Chakravarty, R. T. Chen, Y. Zou, S. Chakravarty, and R. T. Chen, "Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities," Appl. Phys. Lett., Vol. 081109, 2015.        Google Scholar

8. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Meas. Sci. Technol., Vol. 24, 2013.        Google Scholar

9. Seitz, W. R., "Chemical sensors based on fiber optics," Anal. Chem., Vol. 56, 1984.        Google Scholar

10. Shruti, R. K. Sinha, and R. Bhattacharyya, "Photonic crystal slab waveguide-based infiltrated liquid sensors: Design and analysis," J. Nanophotonics, Vol. 5, 053505, 2011.        Google Scholar

11. Goyal, A. K. and S. Pal, "Design and simulation of high-sensitive gas sensor using a ring-shaped photonic crystal waveguide," Phys. Scr., Vol. 90, 25503, 2015.        Google Scholar

12. Tung, B. T., H. M. Nguyen, D. V. Dao, S. Rogge, H. W. M. Salemink, and S. Sugiyama, "Strain sensitive effect in a triangular lattice photonic crystal hole-modified nanocavity," IEEE Sens. J., Vol. 11, 2657, 2011.        Google Scholar

13. Di Falco, A., L. O. Faolain, T. F. Krauss, A. Di Falco, L. O. Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett., Vol. 083501, 2006, 2014.        Google Scholar

14. Di Falco, A., L. O. Faolain, T. F. Krauss, A. Di Falco, L. O. Faolain, and T. F. Krauss, "Chemical sensing in slotted photonic crystal heterostructure cavities," Appl. Phys. Lett., Vol. 063503, 6, 2011.        Google Scholar

15. Scullion, M. G., A. Di Falco, and T. F. Krauss, "Biosensors and bioelectronics slotted photonic crystal cavities with integrated microfluidics for biosensing applications," Biosens. Bioelectron., Vol. 27, 101, 2011.        Google Scholar

16. Lai, W., S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, "On-chip methane sensing by near-IR absorption signatures in a photonic crystal slot waveguide," Opt. Lett., Vol. 36, 984, 2011.        Google Scholar

17. Lai, W., S. Chakravarty, X. Wang, C. Lin, R. T. Chen, W. Lai, S. Chakravarty, X. Wang, and C. Lin, "Photonic crystal slot waveguide absorption spectrometer for on-chip near-infrared spectroscopy of xylene in water," Appl. Phys. Lett., Vol. 023304, 2009, 2014.        Google Scholar

18. Jágerská, J., H. Zhang, Z. Diao, N. Le Thomas, and R. Houdré, "Refractive index sensing with an air-slot photonic crystal nanocavity," Opt. Lett., Vol. 35, 2523, 2010.        Google Scholar

19. Wang, B., M. A. Dundar, R. Nötzel, F. Karouta, R. W. van Der Heiiden, and S. He, "Photonic crystal slot nanobeam slow light waveguides for refractive index sensing," IEEE Trans. Inf. Theory, Vol. 39, 966, 1993.        Google Scholar

20. Kwon, S.-H., T. Sünner, M. Kamp, and A. Forchel, "Optimization of photonic crystal cavity for chemical sensing," Opt. Express, Vol. 16, 11709, 2008.        Google Scholar

21. Lin, S., J. Hu, L. Kimerling, and K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection," Opt. Lett., Vol. 34, 3451, 2009.        Google Scholar

22. Kurt, H., M. N. Erim, and N. Erim, "Chemical various photonic crystal bio-sensor configurations based on optical surface modes," Sensors Actuators B. Chem., Vol. 165, 68, 2012.        Google Scholar

23. Kassa-Baghdouche, L. and E. Cassan, "Sensitivity analysis of ring-shaped slotted photonic crystal waveguides for mid-infrared refractive index sensing," Opt. Quantum Electron., Vol. 51, 2019.        Google Scholar

24. Elshahat, S., I. Abood, Z. Liang, J. Pei, and Z. Ouyang, "Elongated-hexagonal photonic crystal for buffering, sensing, and modulation," Nanomaterials, Vol. 11, 1, 2021.        Google Scholar

25. Scullion, M. G., T. F. Krauss, and A. Di Falco, "Slotted photonic crystal sensors," Sensors (Switzerland), Vol. 13, 3675, 2013.        Google Scholar

26. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett., Vol. 29, 1209, 2004.        Google Scholar

27. Di Falco, A., L. O. Faolain, and T. F. Krauss, "Photonic crystal slotted slab waveguides," Photonics Nanostructures - Fundam. Appl., 38, 2008.        Google Scholar

28. Soref, R., "Mid-infrared photonics in silicon and germanium," Nat. Photonics, Vol. 4, 495, 2010.        Google Scholar

29. Goyal, A. K., H. S. Dutta, and S. Pal, "Recent advances and progress in photonic crystal-based gas sensors," J. Phys. D. Appl. Phys., Vol. 50, 2017.        Google Scholar

30. Kassa-Baghdouche, L. and E. Cassan, "Mid-infrared gas sensor based on high-Q/V point-defect photonic crystal nanocavities," Opt. Quantum Electron., 2020.        Google Scholar

31. Zouache, T. and A. Hocini, "Mid-infrared micro-displacement measurement with a bidimensional silicon photonic crystal," Progress In Electromagnetics Research Letters, Vol. 91, 77-83, 2020.        Google Scholar

32. Rostamian, A., E. Madadi-Kandjani, H. Dalir, V. J. Sorger, and R. T. Chen, "Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared," Nanophotonics, Vol. 10, 1675, 2021.        Google Scholar

33. Barrios, C. A., K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, "Slot-waveguide biochemical sensor," Opt. Lett., Vol. 32, 3080, 2007.        Google Scholar

34. Zou, Y., S. Chakravarty, P. Wray, and R. T. Chen, "Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection," Sensors Actuators, B Chem., Vol. 221, 1094, 2015.        Google Scholar

35. Zou, Y., H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, and R. T. Chen, "Integrated strip and slot waveguides in silicon-on-sapphire for mid infrared VOC detection in water," Conference on Silicon Photonics IX, Vol. 8990, 89900X, 2014.        Google Scholar

36. Zou, Y., H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.-C. Lai, and R. T. Chen, "Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths," Opt. Lett., Vol. 39, 3070, 2014.        Google Scholar

37. Turduev, M., I. H. Giden, C. Babayi, H. Kurt, and K. Staliunas, "Chemical mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing," Sensors Actuators B Chem., Vol. 245, 765, 2017.        Google Scholar

38. Tayoub, H., A. Hocini, and A. Harhouz, "Mid-infrared refractive index sensor based on a 2D photonic crystal coupled cavity-two waveguides," Instrum. Mes. Metrologie, Vol. 18, 165, 2019.        Google Scholar

39. Qiu, M., "Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals," Appl. Phys. Lett., Vol. 1163, 10, 2002.        Google Scholar

40. Vakili, M. and M. Noori, "Highly efficient elliptical microcavity refractive index sensor with single detection unit," Opt. Quantum Electron., Vol. 51, 1, 2019.        Google Scholar

41. Dutta, H. S. and S. Pal, "Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing," Opt. Quantum Electron., Vol. 45, 907, 2013.        Google Scholar

42. Pal, S., E. Guillermain, R. Sriram, B. Miller, and P. M. Fauchet, "Microcavities in photonic crystal waveguides for biosensor applications," Proc. SPIE, Vol. 7553, 755304, 2010.        Google Scholar

43. Mohammed, N. A., M. M. Hamed, A. A. M. Khalaf, A. Alsayyari, and S. El-Rabaie, "High-sensitivity ultra-quality factor and remarkable compact blood components biomedical sensor based on nanocavity coupled photonic crystal," Results Phys., Vol. 14, 102478, 2019.        Google Scholar

44. Gas-Cell, C. P., W. Ye, Z. Tu, X. Xiao, A. Simeone, J. Yan, T. Wu, F. Wu, C. Zheng, and F. K. Tittel, "A NDIR mid-infrared methane sensor with a compact pentahedron gas-cell," Sensors, Vol. 20, 2020.        Google Scholar

45. Del, R., P. Moreira, C. Roberto, and D. S. Filho, "Detection of methane plumes using airborne midwave infrared (3-5 μm) hyperspectral data," Remote Sens., Vol. 2, 1, 2018.        Google Scholar

46. Kassa-Baghdouche, L. and E. Cassan, "Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides," Photonics Nanostructures - Fundam. Appl., Vol. 28, 32, 2017.        Google Scholar