School of Instrument Science and Optoelectronics Engineering
Hefei University of Technology
China
HomepageThe 723 Research Institute of China Shipbuilding Industry Corporation
China
HomepageAcademy of Opto-electric Technology
Hefei University of Technology
China
HomepageAcademy of Photoelectric Technology
Hefei University of Technology
China
HomepageSpecial Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-electric Technology
Hefei University of Technology
China
Homepage1. Ojaroudiparchin, N., M. Shen, S. Zhang, et al. "A switchable 3D-coverage phased array antenna package for 5G mobile terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607 Google Scholar
2. Ngamjanyaporn, P., M. Krairiksh, and M. Bialkowski, "Combating interference in an indoor wireless-communication system using a phased-array antenna with switched-beam elements," Microwave and Optical Technology Letters, Vol. 45, No. 5, 411-415, Jun. 2005.
doi:10.1002/mop.20839 Google Scholar
3. Alhalabi, R. A. and G. M. Rebeiz, "High-Efficiency angled-Dipole antennas for millimeter-wave phased array applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3136-3142, Oct. 2008.
doi:10.1109/TAP.2008.929506 Google Scholar
4. Vendik, O. and M. Parnes, "A phase shifter with one tunable component for a re ectarray antenna," IEEE Antennas and Propagation Magazine, Vol. 50, No. 4, 53-65, Aug. 2008.
doi:10.1109/MAP.2008.4653662 Google Scholar
5. Mahmoud, K. R., A. Baz, W. Alhakami, et al. "The performance of circularly polarized phased sub-array antennas for 5G laptop devices investigation the radiation effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, May 2021.
doi:10.2528/PIERC21012005 Google Scholar
6. Nickel, M., A. Jimenez-Saez, P. Agrawal, et al. "Ridge gap waveguide based liquid crystal phase shifter," IEEE Access, Vol. 8, 77833-77842, 2020.
doi:10.1109/ACCESS.2020.2989547 Google Scholar
7. Ren, H., J. Shao, R. Zhou, et al. "Compact phased array antenna system based on dual-band operations," Microwave and Optical Technology Letters, Vol. 56, No. 6, 1391-1396, Jun. 2014.
doi:10.1002/mop.28343 Google Scholar
8. Li, Y. and A. Abbosh, "Electronically controlled phasing element for single-layer reconfigurable reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 628-631, 2012.
doi:10.1109/LAWP.2012.2203290 Google Scholar
9. Shen, Z. X., S. H. Zhou, S. J. Ge, et al. "Liquid crystal enabled dynamic cloaking of terahertz Fano resonators," Applied Physics Letters, Vol. 114, No. 4, 041106.1-041106.5, Jan. 2019. Google Scholar
10. Wang, J., H. Tian, Y. Wang, et al. "Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial," Optics Express, Vol. 26, No. 5, 5769-5776, Mar. 2018.
doi:10.1364/OE.26.005769 Google Scholar
11. Perez-Palomino, G., M. Barba, J. A. Encinar, et al. "Design and demonstration of an electronically scanned re ectarray antenna at 100 GHz using multiresonant cells based on liquid crystals," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3722-3727, Aug. 2015.
doi:10.1109/TAP.2015.2434421 Google Scholar
12. Bildik, S., S. Dieter, C. Fritzsch, et al. "Recongurable folded re ectarray antenna based upon liquid crystal technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 122-132, Jan. 2015.
doi:10.1109/TAP.2014.2367491 Google Scholar
13. Lin, C. J., C. H. Lin, Y. T. Li, et al. "Electrically controlled liquid crystal phase grating for terahertz waves," IEEE Photonics Technology Letters, Vol. 21, No. 9-12, 730-732, May-Jun. 2009. Google Scholar
14. Luo, C. G., B. Deng, H. Q. Wang, et al. "High-resolution terahertz coded-aperture imaging for near-eld three-dimensional target," Applied Optics, Vol. 58, No. 12, 3293-3330, Apr. 2019.
doi:10.1364/AO.58.003293 Google Scholar
15. Reese, R., E. Polat, H. Tesmer, et al. "Liquid crystal based dielectric waveguide phase shifters for phased arrays at W-band," IEEE Access, Vol. 7, 127032-127041, 2019.
doi:10.1109/ACCESS.2019.2939648 Google Scholar
16. Hu, W., M. Y. Ismail, R. Cahill, et al. "Tunable liquid crystal re ectarray patch element," Electronics Letters, Vol. 42, No. 9, 509-511, Apr. 2006.
doi:10.1049/el:20060571 Google Scholar
17. Perez-Palomino, G., R. Florencio, J. A. Encinar, et al. "Accurate and efficient modeling to calculate the voltage dependence of liquid crystal-based re ectarray cells," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2659-2668, May 2014.
doi:10.1109/TAP.2014.2308521 Google Scholar
18. Zografopoulos, D. C. and R. Beccherelli, "Tunable terahertz shnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scientic Reports, Vol. 5, 13137, Aug. 2015.
doi:10.1038/srep13137 Google Scholar
19. Yang, J., X. Chu, H. Gao, et al. "Fully electronically phase modulation of millimeter-wave via comb electrodes and liquid crystal," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 3, 342-345, Mar. 2021.
doi:10.1109/LAWP.2021.3049870 Google Scholar