1. Ling, F., et al. "A broadband tunable terahertz negative refractive index metamaterial," Scientic Reports, Vol. 8, No. 1, 1-9, 2018. Google Scholar
2. Suzuki, T., et al. "Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314 Google Scholar
3. Luo, H. and Y. Cheng, "Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure," Optical Materials, Vol. 96, 109279, 2019.
doi:10.1016/j.optmat.2019.109279 Google Scholar
4. Tian, Y., et al. "High transmission focusing lenses based on ultrathin all-dielectric Huygens' metasurfaces," Optical Materials, Vol. 109, 110358, 2020.
doi:10.1016/j.optmat.2020.110358 Google Scholar
5. Katrodiya, D., et al. "Metasurface based broadband solar absorber," Optical Materials, Vol. 89, 34-41, 2019.
doi:10.1016/j.optmat.2018.12.057 Google Scholar
6. Khan, A. D., et al. "Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications," Optical Materials, Vol. 84, 195-198, 2018.
doi:10.1016/j.optmat.2018.07.009 Google Scholar
7. Bashirpour, M., et al. "Terahertz radiation enhancement in dipole photoconductive antenna on LT-GaAs using a gold plasmonic nanodisk array," Optics & Laser Technology, Vol. 120, 105726, 2019.
doi:10.1016/j.optlastec.2019.105726 Google Scholar
8. Li, J., et al. "Addressable metasurfaces for dynamic holography and optical information encryption," Science Advances, Vol. 4, No. 6, eaar6768, 2018.
doi:10.1126/sciadv.aar6768 Google Scholar
9. Grady, N. K., et al. "Terahertz metamaterials for linear polarization conversion and anomalous refraction,", Vol. 340, No. 6138, 1304-1307, 2013. Google Scholar
10. Chen, X., et al. "High-efficiency compact circularly polarized microstrip antenna with wide beamwidth for airborne communication," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1518-1521, 2016.
doi:10.1109/LAWP.2016.2517068 Google Scholar
11. Xu, K.-D., et al. "Tunable multi-band terahertz absorber using a single-layer square graphene ring structure with T-shaped graphene strips," Optics Express, Vol. 28, No. 8, 2020, doi:10.1364/OE.390835. Google Scholar
12. Wen, D., et al. "Metasurface for characterization of the polarization state of light," Optics Express, Vol. 23, No. 8, 10272-10281, 2015.
doi:10.1364/OE.23.010272 Google Scholar
13. Zheng, Q., et al. "Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam-Berry phase," Scientic Reports, Vol. 7, No. 1, 1-13, 2017.
doi:10.1038/s41598-016-0028-x Google Scholar
14. Xu, J., et al. "Ultra-broadband linear polarization converter based on anisotropic metasurface," Optics Express, Vol. 26, No. 20, 26235-26241, 2018.
doi:10.1364/OE.26.026235 Google Scholar
15. Luo, F., et al. "Multiband terahertz re ective polarizer based on asymmetric L-shaped split-ring-resonators metasurface," 2016 11th International Symposium on Antennas, Propagation and EM Theory, ISAPE). IEEE, 2016. Google Scholar
16. Zou, M., M. Su, and H. Yu, "Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial," Optical Materials, Vol. 107, 110062, 2020.
doi:10.1016/j.optmat.2020.110062 Google Scholar
17. Gandhi, C., P. R. Babu, and K. Senthilnathan, "Designing abroadband terahertz half-wave plate using an anisotropic metasurface," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 40, No. 5, 500-515, 2019.
doi:10.1007/s10762-019-00575-3 Google Scholar
18. Cao, H., et al. "Dual-band polarization angle independent 90 polarization rotator using chiral metamaterial," IEICE Electronics Express, Vol. 13, No. 15, 20160583-20160583, 2016.
doi:10.1587/elex.13.20160583 Google Scholar
19. Wang, Z., et al. "Huygens metasurface holograms with the modulation of focal energy distribution," Advanced Optical Materials, Vol. 6, No. 12, 1800121, 2018.
doi:10.1002/adom.201800121 Google Scholar
20. Yu, N., et al. "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
21. Yu, J.-B., et al. "High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators," Acta PhysicaSinica, Vol. 64, No. 17, 2015. Google Scholar
22. Zhuang, Y.-Q., et al. "Design of re ective linear-circular polarization converter based on phase gradient metasurface," Acta PhysicaSinica, Vol. 65, No. 15, 2016. Google Scholar
23. Chakravarty, S. and D. Mitra, "A Novel Ultra-Wideband and Multifunctional Re ective Polarization Converter," 2020 IEEE 17th India Council International Conference, INDICON). IEEE, 2020. Google Scholar
24. Yin, B. and M. Yue, "Broadband terahertz polarization converter with anomalous reflection based on phase gradient metasurface," Optics Communications, Prepublish, 2021, doi: 10.1016/J.OPTCOM.2021.126996. Google Scholar
25. Shi, H., et al. "Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 104-107, 2014. Google Scholar
26. Zhang, P., et al. "Design, measurement and analysis of near-eld focusing re ective metasurface for dual-polarization and multi-focus wireless power transfer," IEEE Access, Vol. 7, 110387-110399, 2019.
doi:10.1109/ACCESS.2019.2934135 Google Scholar