1. Lak, A. and H. Oraizi, "Evaluation of SAR distribution in six-layer human head model," International Journal of Antennas and Propagation, Vol. 2013, 2013.
doi:10.1155/2013/580872 Google Scholar
2. https://www.fcc.gov/general/specific-absorption-rate-sar-cellular-telephones.
3. He, L. and S. C. Tjong, "Nanostructured transparent conductive films: Fabrication, characterization and applications," Materials Science and Engineering: R: Reports, Vol. 109, 1-101, 2016.
doi:10.1016/j.mser.2016.08.002 Google Scholar
4. Yang, Y., S. Chen, W. Li, P. Li, J. Ma, B. Li, X. Zhao, Z. Zhu, H. Chang, L. Xiao, H. Xu, and Y. Liu, "Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding," Acs Nano, Vol. 14, No. 7, 8754-8765, 2020.
doi:10.1021/acsnano.0c03337 Google Scholar
5. Wan, Y. J., X. Y. Wang, X. M. Lis, S. Y. Liao, Z. Q. Lin, Y. G. Hu, T. Zhao, X. L. Zeng, C. H. Li, S. H. Yu, P. L. Zhu, R. Sun, and C. P. Wong, "Ultrathin densified carbon nanotube film with ``metal-like'' conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness," ACS Nano, Vol. 14, No. 10, 14134-14145, 2020.
doi:10.1021/acsnano.0c06971 Google Scholar
6. Chen, Y., L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, and S. Jiang, "Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electromagnetic interference shielding," Composites Part A: Applied Science and Manufacturing, Vol. 135, 105960, 2020.
doi:10.1016/j.compositesa.2020.105960 Google Scholar
7. Alibakhshikenari, M., et al. "A comprehensive survey of metamaterial transmission-line based antennas: Design, challenges, and applications," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698 Google Scholar
8. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna designusing metamaterial transmission lines," Radio Science, Vol. 52, No. 12, 1510-1521, 2017.
doi:10.1002/2017RS006313 Google Scholar
9. Alibakhshikenari, M., B. S. Virdee, A. Ali, and E. Limiti, "Extended aperture miniature antenna based on CRLH metamaterials for wireless communication systems operating over UHF to C-band," Radio Science, Vol. 53, No. 2, 154-165, 2018.
doi:10.1002/2017RS006515 Google Scholar
10. Alibakhshi-Kenari, M., et al. "A new miniature ultra wide band planar microstrip antenna based on the metamaterial transmission line," 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 293-297, 2012.
doi:10.1109/APACE.2012.6457679 Google Scholar
11. Ojaroudi, P., et al. "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems," Electronics, Vol. 8, No. 5, 521, 2019.
doi:10.3390/electronics8050521 Google Scholar
12. Tamim, A. M., M. R. I. Faruque, M. U. Khandaker, M. T. Islam, and D. A. Bradley, "Electromagnetic radiation reduction using novel metamaterial for cellular applications," Radiation Physics and Chemistry, Vol. 178, 108976, 2021.
doi:10.1016/j.radphyschem.2020.108976 Google Scholar
13. Belrhiti, L., F. Riouch, A. Tribak, J. Terhzaz, and A. M. Sanchez, "Investigation of dosimetry in four human head models for planar monopole antenna with a coupling feed for LTE/WWAN/WLAN internal mobile phone," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, 494-513, 2017.
doi:10.1590/2179-10742017v16i2748 Google Scholar
14. Hout, S. and J. Y. Chung, "Design and characterization of a miniaturized implantable antenna in a seven-layer brain phantom," IEEE Access, Vol. 7, 162062-162069, 2019.
doi:10.1109/ACCESS.2019.2951489 Google Scholar
15. Drossos, A., V. Santomaa, and N. Kuster, "The dependence of electromagnetic energy absorption upon human head tissue composition in the frequency range of 300-3000 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1988-1995, 2000.
doi:10.1109/22.884187 Google Scholar
16. Rajagopal, B. and L. Rajasekaran, "SAR assessment on three layered spherical human head model irradiated by mobile phone antenna," Human-centric Computing and Information Sciences, Vol. 4, No. 1, 1-11, 2014.
doi:10.1186/s13673-014-0010-1 Google Scholar
17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 2271, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
18. http://niremf.ifac.cnr.it/docs/DIELECTRIC/AppendixC.html.
19. http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php.
20. Ibrani, M., L. Ahma, and E. Hamiti, "The age-dependence of microwave dielectric parameters of biological tissues," Microwave Materials Characterization, Vol. 10, 51400, 2012. Google Scholar
21. Ibrani, M., L. Ahma, E. Hamiti, and J. Haxhibeqiri, "Derivation of electromagnetic properties of child biological tissues at radio frequencies," Progress In Electromagnetics Research Letters, Vol. 25, 87-100, 2011.
doi:10.2528/PIERL11052002 Google Scholar
22. Fomon, S. J., F. Haschke, E. E. Ziegler, and S. E. Nelson, "Body composition of reference children from birth to age 10 years," The American Journal of Clinical Nutrition, Vol. 35, No. 5, 1169-1175, 1982.
doi:10.1093/ajcn/35.5.1169 Google Scholar
23. Chumlea, W. C., S. S. Guo, C. M. Zeller, N. V. Reo, R. N. Baumgartner, P. J. Garry, J. Wang, R. N. Pierson, Jr., S. B. Heymsfield, and R. M. Siervogel, "Total body water reference values and prediction equations for adults," Kidney International, Vol. 59, No. 6, 2250-2258, 2001.
doi:10.1046/j.1523-1755.2001.00741.x Google Scholar
24. Wang, J., O. Fujiwara, and S. Watanabe, "Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 408-413, 2006.
doi:10.1109/TEMC.2006.874085 Google Scholar
25. Schulz, R. B., V. C. Plantz, and D. R. Brush, "Shielding theory and practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 30, No. 30, 187-201, 1998. Google Scholar
26. Jayasree, P. V. Y., V. S. S. N. S. Baba, B. P. Rao, and P. Lakshman, "Analysis of shielding effectiveness of single, double and laminated shields for oblique incidence of EM waves," Progress In Electromagnetics Research B, Vol. 22, 187-202, 2010.
doi:10.2528/PIERB10051305 Google Scholar
27. Dutta, P. K., P. V. Y. Jayasree, and V. S. S. N. S. Baba, "SAR reduction in the modelled human head for the mobile phone using different material shields," Human-centric Computing and Information Sciences, Vol. 6, No. 1, 1-22, 2016.
doi:10.1186/s13673-016-0059-0 Google Scholar
28. Ram, R., D. Khastgir, and M. Rahaman, "Electromagnetic interference shielding effectiveness and skin depth of poly (vinylidene fluoride)/particulate nano-carbon filler composites: Prediction of electrical conductivity and percolation threshold," Polymer International, Vol. 68, No. 6, 1194-1203, 2019.
doi:10.1002/pi.5812 Google Scholar
29. Zhu, X., X. Juan, Q. Feng, Z. Yan, A. Guo, and C. Kan, "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, No. 27, 14589-14597, 2020.
doi:10.1039/D0NR03790G Google Scholar
30. Wang, Y., C. Zhu, R. Pfattne, H. Yan, L. Jin, S. Chen, F. M. Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann, and Z. Bao, "A highly stretchable, transparent, and conductive polymer," Science Advances, Vol. 3, No. 3, e1602076, 2017.
doi:10.1126/sciadv.1602076 Google Scholar
31. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley & Sons, 2006.
32. Rashid, T. B. and H. H. Song, "Analysis of biological effects of cell phone radiation on human body using specific absorption rate and thermoregulatory response," Microwave and Optical Technology Letters, Vol. 61, No. 6, 1482-1490, 2019.
doi:10.1002/mop.31777 Google Scholar
33. Mohammed, B., K. Bialkowski, A. Abbosh, P. C. Mills, and A. P. Bradley, "Closed-form equation to estimate the dielectric properties of biological tissues as a function of age," Bioelectromagnetics, Vol. 38, No. 6, 474-481, 2017.
doi:10.1002/bem.22054 Google Scholar