Vol. 110
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-27
Performance Analysis of a Rain Fading Predicted Model in Tropical Areas for 5G Communication
By
Progress In Electromagnetics Research M, Vol. 110, 49-59, 2022
Abstract
The basic climatic characteristic of the tropical areas is abundant precipitation throughout the year. For such precipitation the radio signal (RF) power of these areas gets diminished in communicating any signaling information from a sender to a receiver i.e. rain fading occurs in these areas. Rain fading is one of the major causes which decline the characteristics of radio system in tropical areas. To reduce excessive rain fading various fade reduction techniques such as diversification techniques, adaptive power control technique and adaptive waveform technique have been used. Frequency diversification technique is an effective technique for diminishing rain fading. In this work in order to diminish rain fading a suggested model has been implemented. Frequency diversification improvement factor is accepted to heighten the performance of this suggested model. Besides, by adopting an experimental data sheet a comparison of this suggested model with a number of various existing rain attenuation predicted models has been depicted for validation of the suggested model. The experiment was performed by accepting two mm-Wave connectors acting on two frequencies of 26 GHz and 38 GHz, respectively, for observing which model renders better result in the tropical region with respect of various distances, frequencies, and elevation angles.
Citation
Trilochan Patra, and Swarup Kumar Mitra, "Performance Analysis of a Rain Fading Predicted Model in Tropical Areas for 5G Communication," Progress In Electromagnetics Research M, Vol. 110, 49-59, 2022.
doi:10.2528/PIERM22021904
References

1. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, et al. "Millimeter wave mobile communications for 5G cellular: It will work," IEEE Access, 35-49, 2013.        Google Scholar

2. Lam, H. Y., J. Din, and S. L. Jong, "Statistical and physical descriptions of raindrop size distributions in equatorial Malaysia from disdrometer observations," Adv. Meteorol., 1-14, 2015.        Google Scholar

3. Moupfouma, F. and J. Tiffon, "Raindrop size distribution from microwave scattering measurements in equatorial and tropical climates," Electron. Lett., Vol. 18, No. 23, 1012-1014, 1982.        Google Scholar

4. Lam, H. Y., L. Luini, J. Din, M. J. Alhilali, S. L. Jong, F. Cuervo, et al. "Impact of rain attenuation on 5G millimeter wave communication systems in equatorial malaysia investigated through disdrometer data," 2017 11th European Conference on Antennas and Propagation (EUCAP), 1793-1797, 2017.        Google Scholar

5. Abdulrahman, A. Y., T. A. Rahman, I. M. Rafiqul, B. J. Olufeagba, T. A. Abdulrahman, J. Akanni, et al. "Investigation of the unified rain attenuation prediction method with data from tropical climates," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1108-1111, January 2014.        Google Scholar

6. Capsoni, C., L. Luini, A. Paraboni, C. Riva, and A. Martellucci, "A new prediction model of rain attenuation that separately accounts for stratiform and convective rain," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 196-204, 2009.        Google Scholar

7. Kumar, L. S., Y. H. Lee, and J. T. Ong, "Truncated gamma drop size distribution models for rain attenuation in Singapore," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1325-1335, 2010.        Google Scholar

8. Awang, M. A. and J. Din, "Comparison of the rain drop size distribution model in tropical region," 2004 RF and Microwave Conference (IEEE Cat. No.04EX924), 20-22, 2004.        Google Scholar

9. Da Silva Mello, L. A. R. S., M. S. Pontes, I. Fagundes, M. P. C. Almeida, and F. J. Andrade, "Modified rain attenuation prediction method considering the effect of wind direction," J. Microwaves, Optoelectron Electromagn. Appl., Vol. 13, No. 2, 254-267, 2014.        Google Scholar

10. Ghiani, R., L. Luini, and A. Fanti, "Investigation of the path reduction factor on terrestrial links for the development of a physically-based rain attenuation model," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-2, 2016.        Google Scholar

11. Alhilali, M., J. Din, M. Schonhuber, and H. Y. Lam, "Estimation of millimeter wave attenuation due to rain using 2D video distrometer data in Malaysia," Indones J. Electr. Eng. Comput. Sci., Vol. 7, No. 1, 164-9, 2017.        Google Scholar

12. Lam, H. Y., L. Luini, J. Din, C. Capsoni, and A. D. Panagopoulos, "Application of the SC EXCELL model for rain attenuation prediction in tropical and equatorial regions," 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 1-6, 2010.        Google Scholar

13. Atayero, A. A., M. K. Luka, and A. A. Alatishe, "Satellite link design: A tutorial," International Journal of Electrical & Computer Sciences, Vol. 11, No. 4, 1-6, August 2011.        Google Scholar

14. Moupfouma, F., "Improvement of a rain attenuation prediction for terrestrial microwave links," IEEE Trans. Antennas Propag., Vol. 32, No. 12, 1368-1372, 1984.        Google Scholar

15. Joss, J. R., R. Cavalli, and R. K. Crane, "Good agreement between theory and experimental for attenuation data," Journal de Recherches Atmospheriques, Vol. 8, 299-313, 1974.        Google Scholar

16. ITU-R "Specific attenuation model for rain for use in prediction methods," Recommendation ITU-R P.638-3, 1-5, 2005.        Google Scholar

17. ITU-R "Propagation data and prediction methods required for the design of Earth-space telecommunication systems," Recommendation ITU-R P.618-8, Vol. 12, 1-24, 2015.        Google Scholar

18. Yussuff, A. I. and N. H. Haji Khamis, "Rain attenuation modelling and mitigation in the tropics: Brief review," International Journal of Electrical and Computer Engineering, Vol. 2, No. 6, 748-757, 2012.        Google Scholar

19. Stutzman, W. L. and K. M. Yon, "A simple rain attenuation model for earth{space radio links operating at 10-35 GHz," Radio Sciences, Vol. 21, No. 1, 65-72, 1986.        Google Scholar

20. García-López, J. A., J. M. Hernando, and J. Selga, "Simple rain Attenuation method for satellite radio links," IEEE Trans. Antennas Propag., Vol. 36, No. 3, 444-448, 1998.        Google Scholar

21. Bhattacharya, R., R. Das, R. Guha, S. D. Barman, and A. B. Bhattacharya, "Variability of millimetre wave rain attenuation and rain rate prediction: A survey," Indian Journal of Radio and Space Physics, Vol. 36, No. 4, 325-344, 2007.        Google Scholar

22. Moupfouma, F., "Electromagnetic waves attenuation due to rain: A prediction model for terrestrial or L.O.S SHF and EHF radio communication links," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 30, 622-632, 2009.        Google Scholar

23. Da Silva Mello, L. A. R., M. S. Pontes, R. M. De. Souza, and N. P. Garcia, "Prediction of rain attenuation in terrestrial links using full rainfall rate distribution," Electron. Lett., Vol. 23, No. 25, 1442-1443, 2007.        Google Scholar

24. Recommendation ITU-R P.530-13 "Propagation data and prediction methods required for the design of terrestrial line-of-sight systems," International Telecommunication Union, Geneva, Switzerland, 2009.        Google Scholar

25. Crane, R. K., Electromagnetic Wave Propagation through Rain, Chaps. 1-4, John Wiley, New York, 1996.

26. Crane, R. K., Propagation Handbook for Wireless Communication System Design, Chap. 2, CRC Press, New York, 2003.

27. De Miranda, E. C., M. S. Pontes, and L. A. R. Da Silva Mello, "Statistical modeling of the cumulative probability distribution function of rainfall rate in Brazil," Proceedings of URSICLIMPARA, 77-80, Ottawa, Ont., Canada, April 1998.        Google Scholar

28. Patra, T. and S. K. Mitra, "Rain attenuation predicted model for 5G communication in tropical regions," International Journal of Engineering and Advanced Technology (IJEAT), Vol. 9, No. 3, 1151-1158, 2020.        Google Scholar

29. ITU-R P.1057-1 "Probability distribution relevant to radio wave propagation modeling,", 2001.        Google Scholar

30. Islam, M. R., L. M. Altajjar, M. M. Rashid, and L. K. Bashar, International WIE Conference on Frequency Diversity Improvement Factor for Rain Fed Mitigation in Malaysia, 159-163, Electrical and Computer Engineering, IEET, December 2015.

31. Patra, T. and S. Sil, "Frequency diversity improvement factor for rain fade mitigation technique for 50-90 GHz in tropical region," IEEE Conference (IEMECON), 86-90, Thailand, August 2017.        Google Scholar

32. D'Amico, M., S. L. Jong, and C. Riva, "Tipping bucket data processing for propagation application," 2013 7th European Conference on Antennas and Propagation (EuCAP), 256-260, 2013.        Google Scholar