1. Abdeltawab, H. H. and Y. A. I. Mohamed, "Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints," IEEE Trans. Ind. Electron., Vol. 63, No. 7, 4242-4254, Jul. 2016.
doi:10.1109/TIE.2016.2532280 Google Scholar
2. Zhang, W., H. Yang, L. Cheng, and H. Zhu, "Modeling based on exact segmentation of magnetic field for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron., Vol. 67, No. 9, 7691-7701, Sept. 2020. Google Scholar
3. Zhang, W., L. Cheng, and H. Zhu, "Suspension force error source analysis and multidimensional dynamic model for a centripetal force type-magnetic bearing," IEEE Trans. Ind. Electron, Vol. 67, No. 9, 7617-7628, Sept. 2020.
doi:10.1109/TIE.2019.2946568 Google Scholar
4. Zhao, C. and H. Zhu, "Design and analysis of a novel bearingless flux-switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 64, No. 8, 6127-6136, Aug. 2017.
doi:10.1109/TIE.2017.2682018 Google Scholar
5. Zhu, H. and Y. Xu, "Permanent magnet parameter design and performance analysis of bearingless flux switching permanent magnet motor," IEEE Trans. Ind. Electron., Vol. 68, No. 5, 4153-4163, May 2021.
doi:10.1109/TIE.2020.2984434 Google Scholar
6. Sun, X., L. Chen, and Z. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Trans. Ind. Electron., Vol. 60, No. 12, 5528-5538, Dec. 2013.
doi:10.1109/TIE.2012.2232253 Google Scholar
7. Zhu, H. and Z. Gu, "Active disturbance rejection control of 5-degree-of-freedom bearingless permanent magnet synchronous motor based on fuzzy neural network inverse system," ISA Transactions, Vol. 101, 295-308, Jan. 2020.
doi:10.1016/j.isatra.2020.01.028 Google Scholar
8. Steinert, D., I. Kovacevic-Badstübner, T. Nussbaumer, and J. W. Kolar, "Loss investigation of slotless bearingless disk drives," Proc. IEEE Energy. Convers. Congr. Expo. (ECCE), 4418-4424, Sep. 2015. Google Scholar
9. Fu, Y., M. Takemoto, S. Ogasawara, and K. Orikawa, "Investigation of a high speed and high power density bearingless motor with neodymium bonded magnet," Proc. IEEE Int. Electr. Mach. Driv. Conf. (IEMDC), 1-8, May 2017. Google Scholar
10. Sun, Y., B. Su, and X. Sun, "Optimal design and performance analysis for interior composite-rotor bearingless permanent magnet synchronous motors," IEEE Access, Vol. 7, 7456-7465, Jan. 2019.
doi:10.1109/ACCESS.2018.2890020 Google Scholar
11. Ooshima, M., S. Kitazawa, A. Chiba, and T. Fukao, "Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems," IEEE Trans. Magn., Vol. 42, No. 10, 3461-3463, Oct. 2006.
doi:10.1109/TMAG.2006.879071 Google Scholar
12. Ooshima, M., S. Kobayashi, and H. Tanaka, "Magnetic suspension performance of a bearingless motor/generator for flyweel energy storage systems," IEEE PES Gen. Meet., 1-4, Jul. 2010. Google Scholar
13. He, C. and T. Wu, "Analysis and design of surface permanent magnet synchronous motor and generator," CES Trans. Electr. Mach. Syst., Vol. 3, No. 1, 94-100, Mar. 2019.
doi:10.30941/CESTEMS.2019.00013 Google Scholar
14. Liu, B., R. Badcock, H. Shu, L. Tan, and J. Fang, "Electromagnetic characteristic analysis and optimization design of a novel HTS coreless induction motor for high-speed operation," IEEE Trans. Appl. Supercond., Vol. 28, No. 4, 1-5, Jun. 2018. Google Scholar
15. Stamenkovic, I., N. Milivojevic, N. Schofield, M. Krishnamurthy, and A. Emadi, "Design, analysis, and optimization of ironless stator permanent magnet machines," IEEE Trans. Power Electron, Vol. 28, No. 5, 2527-2538, May 2013.
doi:10.1109/TPEL.2012.2216901 Google Scholar
16. Liu, K., M. Yin, W. Hua, Z. Ma, M. Lin, and Y. Kong, "Design and optimization of an external rotor ironless BLDCM used in a flywheel energy storage system," IEEE Trans. Magn., Vol. 54, No. 11, 1-5, Nov. 2018. Google Scholar
17. Kim, K. and B. Lee, "Taguchi robust design for the multi-response considering the manufacturing tolerance used in high-speed air blower motor," IET Electr. Power Appl., Vol. 14, No. 7, 1141-1147, Feb. 2020.
doi:10.1049/iet-epa.2019.0600 Google Scholar
18. Guo, Y., J. Si, C. Gao, H. Feng, and C. Gan, "Improved fuzzy-based Taguchi method for multi-objective optimization of direct-drive permanent magnet synchronous motors," IEEE Trans. Magn., Vol. 55, No. 6, 1-4, Jun. 2019.
doi:10.1109/TMAG.2019.2897867 Google Scholar
19. Hwang, C., C. Chang, and C. Liu, "A fuzzy-based Taguchi method for multiobjective design of PM motors," IEEE Trans. Magn., Vol. 49, No. 5, 2153-2156, May 2013.
doi:10.1109/TMAG.2013.2242854 Google Scholar
20. Zhu, H., S. Shen, and X. Wang, "Multi-objective optimization design of outer rotor coreless bearingless permanent magnet synchronous motor," IEEE J. Emerg. Sel. Topic Circuits Syst., Apr. 2021. Google Scholar
21. Zhang, J., H. Wang, L. Chen, C. Tan, and Y. Wang, "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Trans. Magn., Vol. 54, No. 1, 1-13, Jan. 2018.
doi:10.1109/TMAG.2017.2751546 Google Scholar