1. Wu, Q., J. P. Turpin, and D. H. Werner, "Integrated photonic systems based on transformation optics enabled gradient index devices," Nature, Light: Science & Applications, Vol. 1, No. e38, 1-6, Art No. 4700605, November 2012, doi: 10.1038/lsa.2012.38. Google Scholar
2. Zhang, N., W. X. Jiang, H. F. Ma, W. X. Tang, and T. J. Cui, "Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1323-1328, February 2019, doi: 10.1109/TAP.2018.2880115.
doi:10.1109/TAP.2018.2880115 Google Scholar
3. Su, Y. and Z. N. Chen, "A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5088-5097, October 2018, doi: 10.1109/TAP.2018.2858209.
doi:10.1109/TAP.2018.2858209 Google Scholar
4. Luque-González, J. M., R. Halir, J. G. Wanguemert-Perez, J. de-Oliva-Rubio, J. H. Schmid, P. Cheben, I. Molina-Fernandez, and A. Ortega-Monux, "An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials," Laser Photonics Reviews, Vol. 13, No. 19001724, 1-7, September 2019, doi: 10.1002/lpor.201900172. Google Scholar
5. Gaufillet, F., S. Marcellin, and E. Akmansoy, "Dielectric metamaterial-based gradient index lens in the terahertz frequency range," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 4, 1-5, Art No. 4700605, July/August 2017, doi: 10.1109/JSTQE.2016.2633825.
doi:10.1109/JSTQE.2016.2633825 Google Scholar
6. Salami, P. and L. Yousefi, "Far-field subwavelength imaging using phase gradient metasurfaces," IEEE Journal of Lightwave Technology, Vol. 37, No. 10, 2317-2323, March 2019, doi: 10.1109/JLT.2019.2902544.
doi:10.1109/JLT.2019.2902544 Google Scholar
7. Hajiahmadi, M. J., R. Faraji-Dana, and A. K. Skrivervik, "Far field superlensing inside biological media through a nanorod lens using spatiotemporal information," Nature, Scientific Reports, Vol. 11, 1-8, Art No. 19534, January 2021, doi: 10.1038/s41598-021-81091-0. Google Scholar
8. La Spada, L., T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, "Surface wave cloak from graded refractive index nanocomposites," Nature: Scientific Reports, Vol. 6, 29363, July 2016, doi: 10.1038/srep29363. Google Scholar
9. Hadi Badri, S., H. Rasooli Saghai, and H. Soofi, "Multimode waveguide crossing based on a square Maxwell's fisheye lens," Applied Optics, Vol. 58, No. 17, 4647-4653, June 2019, doi: 10.1364/AO.58.004647.
doi:10.1364/AO.58.004647 Google Scholar
10. Fu, Y., Y. Xu, and H. Chen, "Applications of gradient index metamaterials in waveguides," Nature, Scientific Reports, Vol. 5, Art No. 18223, 1-6, December 2015, doi: 10.1038/srep18223. Google Scholar
11. El-Khozondar, H. J., R. J. El-Khozondar, A. Shama, K. Ahmed, and V. Dhasarathan, "Highly efficient solar energy conversion using graded-index metamaterial nanostructured waveguide," Journal of Optical Communications, eISSN 2191-6322, ISSN 0173-4911, February 2020, doi: 10.1515/joc-2019-0285. Google Scholar
12. Liu, Y. and S. Jian, "Tunable trapping and releasing light in graded graphene-silica metamaterial waveguide," Optics Express, Vol. 22, 24312-24321, October 2014, doi: 10.1364/OE.22.024312. Google Scholar
13. Hu, H.-F., D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Scientific Reports, Vol. 3, 1249-1255, February 2013, doi: 10.1038/srep01249.
doi:10.1038/srep01249 Google Scholar
14. Yan, B., B. Yu, J. Xu, Y. Li, Z. Wang, Z. Wang, B. Yu, H. Ma, and C. Gong, "Customized metawaveguide for phase and absorption," Journal of Physics D: Applied Physics, Vol. 54, 465102-465112, August 2021, doi: 10.1088/1361-6463/ac1466.
doi:10.1088/1361-6463/ac1466 Google Scholar
15. Weng, Q., Q. Lin, and H. Wu, "An efficient semianalytical modal analysis of rectangular waveguides containing metamaterials with graded inhomogeneity," International Journal of Antennas and Propagation, Vol. 2021, 1-13, February 2021, doi: 10.1155/2021/6107378. Google Scholar
16. Berneschi, S., S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. Duverger Arfuso, and S. Turrell, "Rare-earth-activated glass-ceramic waveguides," Optical Materials, Vol. 32, 1644-1647, May 2010, doi: 10.1016/j.optmat.2010.04.035.
doi:10.1016/j.optmat.2010.04.035 Google Scholar
17. Guddala, S., Y. Kawaguchi, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, K. Chen, A. Alu, V. M. Menon, and A. B. Khanikaev, "All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides," Nature Communications, Vol. 12, 1-9, June 2021, doi: 10.1038/s41467-021-24138-0. Google Scholar
18. Estep, N. A., D. L. Sounas, J. Soric, and A. Alu, "Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops," Nature Physics, Vol. 10, 923-927, November 2014, doi: 10.1038/nphys3134. Google Scholar
19. Keshavarz, S. and S. Dimitrios, "Topological transmission line metamaterials for microwave applications,", 194-196, August 2021, doi: 10.1109/Metamaterials52332.2021.9577096. Google Scholar
20. Keshavarz, S., A. Abdolali, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU - International Journal of Electronics and Communications, Vol. 111, 152913, August 2019, doi: 10.1016/j.aeue.2019.152913.
doi:10.1016/j.aeue.2019.152913 Google Scholar
21. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, January 2021, doi: 10.2528/PIERC20112307.
doi:10.2528/PIERC20112307 Google Scholar
22. Dalarsson, M., M. Norgren, T. Asenov, and N. Doncov, "Arbitrary loss factors in the wave propagation between RHM and LHM media with constant impedance throughout the structure," Progress In Electromagnetics Research, Vol. 137, 527-538, March 2013, doi: 10.2528/PIER13013004.
doi:10.2528/PIER13013004 Google Scholar
23. Dalarsson, M., "General theory of wave propagation through graded interfaces between positive-and negative refractive-index media," Physical Review A, Vol. 96, 043848, October 2017, doi: PhysRevA.96.043848. Google Scholar
24. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Optics Express, Vol. 17, 6747-6752, April 2009. Google Scholar
25. Dalarsson, M. and S. Nordebo, "TE-wave propagation in graded waveguide structures," OSA Continuum, Vol. 3, 67-76, January 2020.
doi:10.1364/OSAC.379847 Google Scholar