Vol. 110
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-18
TE-Wave Propagation Over an Impedance-Matched RHM to LHM Transition in a Hollow Waveguide
By
Progress In Electromagnetics Research M, Vol. 110, 1-10, 2022
Abstract
We study TE-wave propagation in a hollow waveguide with a graded transition from a lossy right-handed material (RHM) filling the left-hand half of the waveguide to the impedance-matched lossy left-handed material (LHM) filling the right-hand half of the waveguide. The transition between the two media is graded along the direction perpendicular to the boundary between the two materials (chosen to be the z-direction), and the permittivity ε(ω, z) and permeability μ(ω, z) are chosen to vary according to hyperbolic tangent functions along the z-direction. We obtain exact analytical solutions to Maxwell's equations for lossy media, and the solutions for the field components confirm the expected properties of RHM-LHM structures. Thereafter, a numerical study of the wave propagation over an impedance-matched graded RHM-LHM interface is performed, using COMSOL software. The numerical study shows an excellent agreement between the numerical simulations and analytical results. Compared to other solution methods, the present approach has the advantage of being able to model more realistic smooth transitions between different materials. However, in the limiting case, it includes correct results for abrupt transitions as well. In the present approach we also introduce the interface width as an additional degree of freedom that can be used in the design of practical RHM-LHM interfaces.
Citation
Balwan Rana, Brage B. Svendsen, and Mariana Dalarsson, "TE-Wave Propagation Over an Impedance-Matched RHM to LHM Transition in a Hollow Waveguide," Progress In Electromagnetics Research M, Vol. 110, 1-10, 2022.
doi:10.2528/PIERM22022505
References

1. Wu, Q., J. P. Turpin, and D. H. Werner, "Integrated photonic systems based on transformation optics enabled gradient index devices," Nature, Light: Science & Applications, Vol. 1, No. e38, 1-6, Art No. 4700605, November 2012, doi: 10.1038/lsa.2012.38.

2. Zhang, N., W. X. Jiang, H. F. Ma, W. X. Tang, and T. J. Cui, "Compact high-performance lens antenna based on impedance-matching gradient-index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1323-1328, February 2019, doi: 10.1109/TAP.2018.2880115.
doi:10.1109/TAP.2018.2880115

3. Su, Y. and Z. N. Chen, "A flat dual-polarized transformation-optics beamscanning luneburg lens antenna using PCB-stacked gradient index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5088-5097, October 2018, doi: 10.1109/TAP.2018.2858209.
doi:10.1109/TAP.2018.2858209

4. Luque-González, J. M., R. Halir, J. G. Wanguemert-Perez, J. de-Oliva-Rubio, J. H. Schmid, P. Cheben, I. Molina-Fernandez, and A. Ortega-Monux, "An ultracompact GRIN-lens-based spot size converter using subwavelength grating metamaterials," Laser Photonics Reviews, Vol. 13, No. 19001724, 1-7, September 2019, doi: 10.1002/lpor.201900172.

5. Gaufillet, F., S. Marcellin, and E. Akmansoy, "Dielectric metamaterial-based gradient index lens in the terahertz frequency range," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 4, 1-5, Art No. 4700605, July/August 2017, doi: 10.1109/JSTQE.2016.2633825.
doi:10.1109/JSTQE.2016.2633825

6. Salami, P. and L. Yousefi, "Far-field subwavelength imaging using phase gradient metasurfaces," IEEE Journal of Lightwave Technology, Vol. 37, No. 10, 2317-2323, March 2019, doi: 10.1109/JLT.2019.2902544.
doi:10.1109/JLT.2019.2902544

7. Hajiahmadi, M. J., R. Faraji-Dana, and A. K. Skrivervik, "Far field superlensing inside biological media through a nanorod lens using spatiotemporal information," Nature, Scientific Reports, Vol. 11, 1-8, Art No. 19534, January 2021, doi: 10.1038/s41598-021-81091-0.

8. La Spada, L., T. M. McManus, A. Dyke, S. Haq, L. Zhang, Q. Cheng, and Y. Hao, "Surface wave cloak from graded refractive index nanocomposites," Nature: Scientific Reports, Vol. 6, 29363, July 2016, doi: 10.1038/srep29363.

9. Hadi Badri, S., H. Rasooli Saghai, and H. Soofi, "Multimode waveguide crossing based on a square Maxwell's fisheye lens," Applied Optics, Vol. 58, No. 17, 4647-4653, June 2019, doi: 10.1364/AO.58.004647.
doi:10.1364/AO.58.004647

10. Fu, Y., Y. Xu, and H. Chen, "Applications of gradient index metamaterials in waveguides," Nature, Scientific Reports, Vol. 5, Art No. 18223, 1-6, December 2015, doi: 10.1038/srep18223.

11. El-Khozondar, H. J., R. J. El-Khozondar, A. Shama, K. Ahmed, and V. Dhasarathan, "Highly efficient solar energy conversion using graded-index metamaterial nanostructured waveguide," Journal of Optical Communications, eISSN 2191-6322, ISSN 0173-4911, February 2020, doi: 10.1515/joc-2019-0285.

12. Liu, Y. and S. Jian, "Tunable trapping and releasing light in graded graphene-silica metamaterial waveguide," Optics Express, Vol. 22, 24312-24321, October 2014, doi: 10.1364/OE.22.024312.

13. Hu, H.-F., D. Ji, X. Zeng, K. Liu, and Q. Gan, "Rainbow trapping in hyperbolic metamaterial waveguide," Scientific Reports, Vol. 3, 1249-1255, February 2013, doi: 10.1038/srep01249.
doi:10.1038/srep01249

14. Yan, B., B. Yu, J. Xu, Y. Li, Z. Wang, Z. Wang, B. Yu, H. Ma, and C. Gong, "Customized metawaveguide for phase and absorption," Journal of Physics D: Applied Physics, Vol. 54, 465102-465112, August 2021, doi: 10.1088/1361-6463/ac1466.
doi:10.1088/1361-6463/ac1466

15. Weng, Q., Q. Lin, and H. Wu, "An efficient semianalytical modal analysis of rectangular waveguides containing metamaterials with graded inhomogeneity," International Journal of Antennas and Propagation, Vol. 2021, 1-13, February 2021, doi: 10.1155/2021/6107378.

16. Berneschi, S., S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. Duverger Arfuso, and S. Turrell, "Rare-earth-activated glass-ceramic waveguides," Optical Materials, Vol. 32, 1644-1647, May 2010, doi: 10.1016/j.optmat.2010.04.035.
doi:10.1016/j.optmat.2010.04.035

17. Guddala, S., Y. Kawaguchi, F. Komissarenko, S. Kiriushechkina, A. Vakulenko, K. Chen, A. Alu, V. M. Menon, and A. B. Khanikaev, "All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides," Nature Communications, Vol. 12, 1-9, June 2021, doi: 10.1038/s41467-021-24138-0.

18. Estep, N. A., D. L. Sounas, J. Soric, and A. Alu, "Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops," Nature Physics, Vol. 10, 923-927, November 2014, doi: 10.1038/nphys3134.

19. Keshavarz, S. and S. Dimitrios, "Topological transmission line metamaterials for microwave applications,", 194-196, August 2021, doi: 10.1109/Metamaterials52332.2021.9577096.

20. Keshavarz, S., A. Abdolali, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU - International Journal of Electronics and Communications, Vol. 111, 152913, August 2019, doi: 10.1016/j.aeue.2019.152913.
doi:10.1016/j.aeue.2019.152913

21. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, January 2021, doi: 10.2528/PIERC20112307.
doi:10.2528/PIERC20112307

22. Dalarsson, M., M. Norgren, T. Asenov, and N. Doncov, "Arbitrary loss factors in the wave propagation between RHM and LHM media with constant impedance throughout the structure," Progress In Electromagnetics Research, Vol. 137, 527-538, March 2013, doi: 10.2528/PIER13013004.
doi:10.2528/PIER13013004

23. Dalarsson, M., "General theory of wave propagation through graded interfaces between positive-and negative refractive-index media," Physical Review A, Vol. 96, 043848, October 2017, doi: PhysRevA.96.043848.

24. Dalarsson, M. and P. Tassin, "Analytical solution for wave propagation through a graded index interface between a right-handed and a left-handed material," Optics Express, Vol. 17, 6747-6752, April 2009.

25. Dalarsson, M. and S. Nordebo, "TE-wave propagation in graded waveguide structures," OSA Continuum, Vol. 3, 67-76, January 2020.
doi:10.1364/OSAC.379847