Vol. 110
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-04-27
Compressed T-Matrix Algorithm for Scalar and Electromagnetic Scattering from Multiple Objects and Multiple Incident Directions
By
Progress In Electromagnetics Research M, Vol. 110, 61-72, 2022
Abstract
A compression algorithm for the T-matrix scattering solution from multiple objects and incident fields is derived and examined which we call the Compressed T-Matrix Algorithm (CTMA). The CTMA is derived by applying the SVD and Woodbury matrix-inverse identity to compress the original T-matrix system of equations and simultaneously compress the matrix of right-hand side incident field vectors. This is suited for scattering problems with many incident directions. We quantify the compression rates for different collections of dielectric spheres and draw comparisons to the Characteristic Basis Function Method (CBFM) with which the CTMA shares many structural similarities.
Citation
Mark S. Haynes, and Ines Fenni, "Compressed T-Matrix Algorithm for Scalar and Electromagnetic Scattering from Multiple Objects and Multiple Incident Directions," Progress In Electromagnetics Research M, Vol. 110, 61-72, 2022.
doi:10.2528/PIERM22030901
References

1. Waterman, P. C. and R. Truell, "Multiple scattering of waves," J. of Math. Phy., Vol. 2, No. 4, 512-537, 1961.
doi:10.1063/1.1703737        Google Scholar

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

3. Mishchenko, M. I., G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, "T-matrix theory of electromagnetic scattering by particles and its applications: A comprehensive reference database," J. Quant. Spectrosc. Radiat. Transfer, Vol. 88, No. 1-3, 357-406, 2004.
doi:10.1016/j.jqsrt.2004.05.002        Google Scholar

4. Koc, S. and W. C. Chew, "Calculation of acoustical scattering from a cluster of scatterers," J. Acoust. Soc. Am., Vol. 103, No. 2, 721-734, 1998.
doi:10.1121/1.421231        Google Scholar

5. Chew, W. C., L. Gurel, Y.-M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. Microwave Theory and Techniques, Vol. 40, No. 4, 716-723, 1992.
doi:10.1109/22.127521        Google Scholar

6. Wang, Y.-M. and W. Chew, "A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres," IEEE Trans. Ant. Prop., Vol. 41, No. 12, 1633-1639, 1993.
doi:10.1109/8.273306        Google Scholar

7. Chew, W. C., C. Lu, and Y. Wang, "Efficient computation of three-dimensional scattering of vector electromagnetic waves," JOSA A, Vol. 11, No. 4, 1528-1537, 1994.
doi:10.1364/JOSAA.11.001528        Google Scholar

8. Chew, W. and C. Lu, "The recursive aggregate interaction matrix algorithm for multiple scatterers," IEEE Trans. on Ant. and Prop., Vol. 43, No. 12, 1483-1486, 1995.
doi:10.1109/8.475942        Google Scholar

9. Gumerov, N. A. and R. Duraiswami, "Computation of scattering from N spheres using multipole reexpansion," J. Acoust. Soc. Am., Vol. 112, No. 6, 2688-2701, 2002.
doi:10.1121/1.1517253        Google Scholar

10. Mackowski, D. W. and M. I. Mishchenko, "A multiple sphere T-matrix fortran code for use on parallel computer clusters," J. Quant. Spec. and Rad. Trans., Vol. 112, No. 13, 2182-2192, 2011.
doi:10.1016/j.jqsrt.2011.02.019        Google Scholar

11. Egel, A., L. Pattelli, G. Mazzamuto, D. S. Wiersma, and U. Lemmer, "Celes: CUDA-accelerated simulation of electromagnetic scattering by large ensembles of spheres," J. Quant. Spec. and Rad. Trans., Vol. 199, 103-110, 2017.
doi:10.1016/j.jqsrt.2017.05.010        Google Scholar

12. Siqueira, P. R. and K. Sarabandi, "T-matrix determination of effective permittivity for three-dimensional dense random media," IEEE Trans. Ant. Prop., Vol. 48, No. 2, 317-327, 2000.
doi:10.1109/8.833082        Google Scholar

13. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Ant. Prop., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471        Google Scholar

14. Um, J. and G. M. McFarquhar, "Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals," J. Quant. Spec. and Rad. Trans., Vol. 127, 207-223, 2013.
doi:10.1016/j.jqsrt.2013.05.020        Google Scholar

15. Liao, D. and T. Dogaru, "Full-wave scattering and imaging characterization of realistic trees for FOPEN sensing," IEEE GRSL, Vol. 13, No. 7, 957-961, 2016.        Google Scholar

16. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206        Google Scholar

17. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. on Elec. Comp., Vol. 47, No. 4, 763-773, 2005.        Google Scholar

18. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proc. Roy. Soc., Ser. A, Math. and Phys. Sci., Vol. 433, No. 1889, 599-614, 1991.        Google Scholar

19. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 1-4, 133-142, 1992.
doi:10.1163/156939392X01075        Google Scholar

20. Chew, W. C. and Y. Wang, "Efficient ways to compute the vector addition theorem," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 5, 651-665, 1993.
doi:10.1163/156939393X00787        Google Scholar

21. Yaghjian, A. D., "Sampling criteria for resonant antennas and scatterers," J. App. Phys., Vol. 79, No. 10, 7474-7482, 1996.
doi:10.1063/1.362683        Google Scholar

22. Woodbury, M. A., Inverting Modified Matrices, Statistical Research Group, 1950.

23. Hager, W. W., "Updating the inverse of a matrix," SIAM Rev., Vol. 31, No. 2, 221-239, 1989.
doi:10.1137/1031049        Google Scholar

24. Tsang, L., J. Kong, and K. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, Wiley Interscience, 2000.
doi:10.1002/0471224286

25. Haynes, M. S., Waveport Scattering Library, Jet Propulsion Laboratory, 2021, https://doi.org/10.48588/JPL.HE9D-BA55, https://github.com/nasajpl/Waveport.

26. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, Vol. 2, IEEE Press, 1998.

27. Fenni, I., Z. S. Haddad, H. Roussel, K.-S. Kuo, and R. Mittra, "A computationally efficient 3-D full-wave model for coherent EM scattering from complex-geometry hydrometeors based on MoM/CBFM-enhanced algorithm," IEEE TGRS, Vol. 56, No. 5, 2674-2688, 2017.        Google Scholar

28. Brand, M., "Incremental singular value decomposition of uncertain data with missing values," Euro. Conf. Comp. Vis., 707-720, Springer, 2002.        Google Scholar

29. Baker, C. G., K. A. Gallivan, and P. Van Dooren, "Low-rank incremental methods for computing dominant singular subspaces," Lin. Alg. App., Vol. 436, No. 8, 2866-2888, 2012.
doi:10.1016/j.laa.2011.07.018        Google Scholar