1. Owusu Twumasi, J., P. De Stefano, and J. T. Christian, "The application of synthetic aperture radar imaging technique to measure moisture content of concrete structures," Meas. J. Int. Meas. Confed., Vol. 152, 107335, 2020.
doi:10.1016/j.measurement.2019.107335 Google Scholar
2. Tanase, M. A., et al. "Synthetic aperture radar sensitivity to forest changes: A simulations-based study for the Romanian forests," Sci. Total Environ., Vol. 689, 1104-1114, 2019.
doi:10.1016/j.scitotenv.2019.06.494 Google Scholar
3. Tetuko, J., et al. "Development of circularly polarized synthetic aperture radar on-board UAV JX-1," Int. J. Remote Sens., 4762-4765, 2017. Google Scholar
4. Schwegmann, C. P., W. Kleynhans, B. P. Salmon, L. W. Mdakane, and R. G. V. Meyer, "Very deep learning for ship discrimination in Synthetic Aperture Radar imagery," International Geoscience and Remote Sensing Symposium (IGARSS), 104-107, 2016. Google Scholar
5. Sumantyo, J. T. S. and K. V. Chet, "Development of circularly polarized synthetic aperture radar onboard UAV for earth diagnosis," Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, 2012. Google Scholar
6. Brookner, E., W. M. Hall, and R. H. Westlake, "Faraday loss for L-band radar and communications systems," IEEE Trans. Aerosp. Electron. Syst., Vol. 21, No. 4, 459-469, 1985.
doi:10.1109/TAES.1985.310634 Google Scholar
7. Yahya, M. and Z. Awang, "Cross polarization ratio analysis of circular polarized patch antenna," Proc. - 2010 12th Int. Conf. Electromagn. Adv. Appl. ICEAA'10, 442-445, 2010.
doi:10.1109/ICEAA.2010.5653152 Google Scholar
8. Fukusako, T., "Broadband characterization of circularly polarized waveguide antennas using L-shaped probe," J. Electromagn. Eng. Sci., Vol. 17, No. 1, 1-8, 2017.
doi:10.5515/JKIEES.2017.17.1.1 Google Scholar
9. Rignot, E. J. M., "Effect of Faraday rotation on L-band interferometric and polarimetric synthetic-aperture radar data," IEEE Trans. Geosci. Remote Sens., 383-390, 2000.
doi:10.1109/36.823934 Google Scholar
10. Baharuddin, M., V. Wissan, J. Tetuko Sri Sumantyo, and H. Kuze, "Elliptical microstrip antenna for circularly polarized synthetic aperture radar," AEU - Int. J. Electron. Commun., Vol. 65, No. 1, 62-67, 2011.
doi:10.1016/j.aeue.2010.01.012 Google Scholar
11. Shookooh, B. R., A. Monajati, and H. Khodabakhshi, "Theory, design, and implementation of a new family of ultra-wideband metamaterial microstrip array antennas based on fractal and fibonacci geometric patterns," J. Electromagn. Eng. Sci., Vol. 20, No. 1, 53-63, 2020.
doi:10.26866/jees.2020.20.1.53 Google Scholar
12. Yohandri, V. Wissan, I. Firmansyah, P. Rizki Akbar, J. T. Sri Sumantyo, and H. Kuze, "Development of circularly polarized array antenna for synthetic aperture radar sensor installed on UAV," Progress In Electromagnetics Research C, Vol. 19, 119-133, 2011.
doi:10.2528/PIERC10121708 Google Scholar
13. Hussein, M., Yohandri, J. T. S. Sumantyo, and A. Yahia, "A low sidelobe level of circularly polarized microstrip array antenna for CP-SAR sensor," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1931-1941, Oct. 2013.
doi:10.1080/09205071.2013.828577 Google Scholar
14. Yohandri, J. T. Sri Sumantyo, and H. Kuze, "Circularly polarized array antennas for synthetic aperture radar," PIERS Proceedings, 1244-1247, Suzhou, China, Sep. 12-16, 2011. Google Scholar
15. Varshney, H. K., M. Kumar, A. K. Jaiswal, R. Saxena, and K. Jaiswal, "A survey on different feeding techniques of rectangular microstrip patch antenna," Int. J. Curr. Eng. Technol., Vol. 4, No. 3, 1418-1423, 2014. Google Scholar
16. Clay, A. C., S. C. Wooh, L. Azar, and J. Y. Wang, "Experimental study of phased array beam steering characteristics," J. Nondestruct. Eval., Vol. 18, 59-71, 1999.
doi:10.1023/A:1022618321612 Google Scholar
17. Balanis, C. E., Antenna Theory: Analysis and Design, 3rd Ed., 1136, 2005.
18. Kim, J. O., W. S. Yoon, and S. M. Han, "Frequency-selective beamforming array antenna systems with frequency-dependent phase shifters," J. Electromagn. Eng. Sci., Vol. 19, No. 4, 259-265, 2019.
doi:10.26866/jees.2019.19.4.259 Google Scholar
19. Lee, S. G. and J. H. Lee, "Calculating array patterns using an active element pattern method with ground edge effects," J. Electromagn. Eng. Sci., Vol. 18, No. 3, 175-181, 2018.
doi:10.26866/jees.2018.18.3.175 Google Scholar
20. Lee, K. F. and K. F. Tong, "Microstrip patch antennas," Handbook of Antenna Technologies, 2016. Google Scholar
21. Verma, R. K., N. K. Saxena, and P. K. S. Pourush, "Effect of air-gap technique in bandwidth of microstrip patch array antenna," Int. J. Res. Publ. Eng. Technol. [IJRPET], Vol. 3, No. 6, 165-168, 2017. Google Scholar
22. Arora, A., A. Khemchandani, Y. Rawat, S. Singhai, and G. Chaitanya, "Comparative study of different feeding techniques for rectangular microstrip patch antenna," Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng., Vol. 3, No. 5, 2-35, 2015. Google Scholar
23. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 2001.
24. Gautam, A. K., P. Benjwal, and B. K. Kanaujia, "A compact square microstrip antenna for circular polarization," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 897-900, 2012.
doi:10.1002/mop.26746 Google Scholar
25. Rizki Akbar, P., J. T. S. Sumantyo, and H. Kuze, "CP-SAR UAV Development," International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XXXVIII, Part 8, 203-208, 2010. Google Scholar
26. Bevelacqua, P. J. and C. Balanis, "Antenna arrays: Performance limits and geometry optimization,", 158 pages, Arizona State Univ., 2008. Google Scholar
27. Alieldin, A., Y. Huang, M. Stanley, and S. Joseph, "A circularly polarized circular antenna array for satellite TV reception," 2018 15th Eur. Radar Conf. EuRAD 2018, 505-508, 2018. Google Scholar
28. Huang, J., W. Lin, F. Qiu, C. Jiang, D. Lei, and Y. J. Guo, "A low profile, ultra-lightweight, high efficient circularly-polarized antenna array for Ku band satellite applications," IEEE Access, Vol. 5, 18356-18365, 2017.
doi:10.1109/ACCESS.2017.2750318 Google Scholar