Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-01
Frequency Switchable and Tunable Negative Group Delay Circuits Based on Defected Microstrip Structures
By
Progress In Electromagnetics Research M, Vol. 113, 23-33, 2022
Abstract
Group delay distortions are critical for high quality transmissions in today's communication system. In this paper, we have proposed design and analysis of defected microstrip line-based Negative Group Delay Circuits (NGDCs) to compensate for group delay distortions. Initially, a tunable pulse shaped defection based NGD structure is designed wherein a variable resistor connection allows group delay tunability. The proposed design is able to generate a group delay (GD) tuning from 0 to -4.8 ns at 2.7 GHz as the resistance is varied from 1 kΩ to 1 MΩ. Further, we embedded two stubs to implement the switchable multi-band feature on the proposed NGDC design. The NGDCs are fabricated, and the measured results confirm the proposed concept. Lastly, we designed a tunable compact NGDC with inverted-U stubs inscribed inside a microstrip line. It generated GD tunability at different frequency bands with the aid of a variable resistor and switched the frequencies as required.
Citation
Chithra Liz Palson Rema Kunhikrishnan Sreelal Deepti Das Krishna Babita Roslind Jose , "Frequency Switchable and Tunable Negative Group Delay Circuits Based on Defected Microstrip Structures," Progress In Electromagnetics Research M, Vol. 113, 23-33, 2022.
doi:10.2528/PIERM22072301
http://www.jpier.org/PIERM/pier.php?paper=22072301
References

1. Su, Y. U., "Group delay variations in microwave filters and equalization methodologies,", Department of Microtechnology and Nanoscience, Master's Thesis in Microtechnology and Nanoscience, 2012.
doi:10.1109/MMM.2020.3035862

2. Xiao, J. K., Q. F. Wang, and J. G. Ma, "Negative group delay circuits and applications: Feedforward amplifiers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, 2021.

3. Choi, H., G. Chaudhary, T. Moon, Y. Jeong, J. Lim, and C. D. Kim, "A design of composite negative group delay circuit with lower signal attenuation for performance improvement of power amplifier linearization techniques," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, Jun. 2011.

4. Choi, H., Y. Kim, Y. Jeong, and J. Lim, "A design of size-reduced negative group delay circuit using a stepped impedance resonator," Proc. Asia-Pacific Microw. Conf., 118-1121, Dec. 2010.
doi:10.1109/JSTQE.2002.807979

5. Kitano, M., T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 1, 43-51, Jan.-Feb. 2003.

6. Brillouin, L., Wave Propagation and Group Velocity, Academic, Cambridge, MA, USA, 1960.
doi:10.1109/TMTT.2010.2045576

7. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feed forward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 5, 1116-1125, May 2010.
doi:10.1049/iet-map:20050229

8. Oh, S. S. and L. Shafai, "Compensated circuit with characteristics of lossless double negative materials and its application to array antennas," IET Microw. Antennas Propag., Vol. 1, No. 1, 29-38, 2007.
doi:10.1109/ACCESS.2020.2977100

9. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A full-passband linear-phase band-pass filter equalized with negative group delay circuits," IEEE Access, Vol. 8, 43336-43343, 2020.
doi:10.2528/PIER10041808

10. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.1002/mmce.20482

11. Ravelo, B. E. G., A. Pérennec, and M. Le Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 21, No. 1, 17-24, Wiley, 2011.
doi:10.1002/mop.23883

12. Ravelo, B., M. Le Roy, and A. Pérennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microw. Opt. Technol. Lett., Vol. 50, 3078-3080, 2008.
doi:10.1109/JSEN.2019.2921834

13. Wan, F., et al., "Design of multi-scale negative group delay circuit for sensors signal time-delay cancellation," IEEE Sensors J., Vol. 19, No. 19, 8951-9962, 2019.
doi:10.1002/cta.1902

14. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016-1032, Oct. 2014.

15. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized negative group delay circuit using defected microstrip structure and lumped elements," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, 2013.

16. Choi, H., et al., "A compact DGS load-network for highly efficient class-E power amplifir," 2009 European Microwave Conference (EuMC), 492-495, 2009.
doi:10.1109/75.658644

17. Radisic, V., et al., "Novel 2-d photonic bandgap structure for microstrip lines," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/TCSI.2011.2107251

18. Kandic, M. and G. E. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 58, No. 8, 1727-1735, Aug. 2011.
doi:10.1109/TMTT.2013.2295555

19. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 2, 234-243, Feb. 2014.

20. Xiao, J.-K. and Q.-F. Wang, "Individually controllable tri-band negative group delay circuit using defected microstrip structure," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, 2019.

21. Zhao, G. and B. You, "A tunable negative group delay filter using memristors," 2020 IEEE MTT-S International Wireless Symposium (IWS), Shanghai, China, 2020.

22. Palson, C. L., R. K. Sreelal, D. D. Krishna, and B. R. Jose, "Memristor based tunable negative group delay circuit," 2021 International Conference on Advances in Computing and Communications (ICACC), 1-4, 2021.
doi:10.1109/LMWC.2014.2322445

23. Chaudhary, G., Y. Jeong, and J. Lim, "Miniaturized dual-band negative group delay circuit using dual-plane defected structures," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 8, 521-523, Aug. 2014.
doi:10.1109/RWS.2015.7129762

24. Chaudhary, G., P. Kim, J. Jeong, Y. Jeong, and J. Lim, "Dual-band negative group delay circuit using defected microstrip structure," 2015 IEEE Radio and Wireless Symposium (RWS), 129-131, 2015.
doi:10.1109/TCSII.2019.2955109

25. Wan, F., N. Li, B. Ravelo, and J. Ge, "O=O shape low-loss negative group delay microstrip circuit," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1795-1799, Oct. 2020.
doi:10.1109/TMTT.2013.2295555

26. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 2, 234-243, Feb. 2014.
doi:10.2528/PIERC20112201

27. Meng, Y., Z. Wang, S.-J. Fang, and H. Liu, "A tri-band negative group delay circuit for multiband wireless applications," Progress In Electromagnetics Research C, Vol. 108, 159-169, 2021.
doi:10.1002/mmce.23159

28. Meng, Y., Z. Wang, S. Fang, and H. Liu, "Reconfigurable negative group delay circuit with tunable group delay flatness," Int. J. RF Microw. Comput. Aided Eng., Vol. 32, No. 6, e23159, 2022.

29. Chaudhary, G., Y. Jeong, and J. Lim, "Realization of negative group delay network using defected microstrip structure," International Journal of Antennas and Propogation, Vol. 2014, 1-5, 2014.
doi:10.2528/PIERB21071209

30. Kandic, M. and G. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1-18, Sep. 2021.
doi:10.1109/MDAT.2020.3002149

31. Wan, F., N. Li, B. Ravelo, W. Rahajandraibe, and S. Lalléchère, "Design of shape stub-based negative group delay circuit," IEEE Design & Test, Vol. 38, No. 2, 78-88, Apr. 2021.