Vol. 126
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-02
Low Profile, Wideband, High Gain CDRA with Microstrip Feed for ISM and C Band Applications
By
Progress In Electromagnetics Research C, Vol. 126, 77-90, 2022
Abstract
Modern wireless communication systems require low profile, high gain and wideband antennas. To meet these requirements a low profile Cylindrical Dielectric Resonator Antenna (CDRA) is proposed with wide bandwidth and high gain for ISM and C-Band applications. The CDRA is excited with a 50 ohm microstrip feed line with HEM12δ, HEM21δ and HEM13δ modes being observed at 5.6 GHz, 7.4 GHz and 8.6 GHz resonant frequencies respectively. The perturbation on the basic CDRA leads to the excitation of higher order modes and also decrease the effective permittivity of the CDRA by a factor of 13.4%, thereby reducing the antenna's Q factor, which helps to broaden the antenna's operating frequency range. The proposed structure offers wide impedance bandwidth of 69.4% from 4.8 GHz to 9.9 GHz. A peak gain of 8.9 dBi at 9.4 GHz and 95% radiation efficiency at 5.6 GHz are observed. Additionally, the proposed CDRA has a small footprint of 1.12λ0 x 1.12λ0 with a low profile of 0.16λ0 where λ0 is the wavelength of the lower cut-off frequency. The proposed antenna is fabricated and measured, and a close agreement is found between the simulated and measured results.
Citation
Manshree Mishra, Anil Rajput, Pramod Kumar Gupta, and Biswajeet Mukherjee, "Low Profile, Wideband, High Gain CDRA with Microstrip Feed for ISM and C Band Applications," Progress In Electromagnetics Research C, Vol. 126, 77-90, 2022.
doi:10.2528/PIERC22091402
References

1. Kiourti, A. and K. S. Nikita, "A review of implantable patch antennas for biomedical telemetry: Challenges and solutions," IEEE Antennas Propag. Mag., Vol. 54, No. 3, 210-228, Jun. 2012.

2. Kiourti, A. and K. S. Nikita, "A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables," IEEE Trans. Biomed. Eng., Vol. 64, No. 7, 1422-1430, Feb. 2017.

3. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, Norwood, MA, USA, Dec. 2007.

4. Pan, Y. M. and S. Y. Zheng, "A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 68-71, 2016.

5. Dong, X. Y., W. W. Yang, H. Tang, and J. X. Chen, "Wideband low-profile dielectric resonator antenna with a lattice structure," Electron. Lett., Vol. 53, No. 19, 1289-1290, Sep. 2017.

6. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Trans. Antennas Propag., Vol. 57, No. 4, Part 2, 1043-1049, Apr. 2009.

7. Chauhan, M., A. Rajput, and B. Mukherjee, "Wideband circularly polarized low profile dielectric resonator antenna with meta superstrate for high gain," AEU --- Int. J. Electron. Commun., Vol. 128, 153524, Dec. 2021.

8. Fakhte, S., H. Oraizi, and L. Matekovits, "Gain improvement of rectangular dielectric resonator antenna by engraving grooves on its side walls," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2167-2170, May 2017.

9. Chatterjee, A. and S. K. Parui, "Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2233-2239, May 2017.

10. Petosa, A. and S. Thirakoune, "Rectangular dielectric resonator antennas with enhanced gain," IEEE Trans. Antennas Propag., Vol. 59, No. 4, 1385-1389, Apr. 2011.

11. Chauhan, M., A. K. Pandey, and B. Mukherjee, "A novel compact cylindrical dielectric resonator antenna for wireless sensor network application," IEEE Sensors Lett., Vol. 2, No. 2, 1-4, Jun. 2018.

12. Gajera, H., D. Guha, and C. Kumar, "New technique of dielectric perturbation in dielectric resonator antenna to control the higher mode leading to reduced cross-polar radiations," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 445-448, 2017.

13. Huang, W. and A. A. Kishk, "Compact wideband multi-layer cylindrical dielectric resonator antennas," IET Microwaves, Antennas Propag., Vol. 1, No. 5, 998-1005, Nov. 2007.

14. Chair, R., A. A. Kishk, and K. F. Lee, "Wideband simple cylindrical dielectric resonator antennas," IEEE Microw. Wirel. Components Lett., Vol. 15, No. 4, 241-243, Apr. 2005.

15. Kajfez, D., A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 12, 1609-1616, Dec. 198.

16. Liu, T., H. Yang, Y. He, and J. Lu, "A TE mode omnidirectional dielectric resonator antenna excited by a special configuration," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7339-7341, Dec. 2018.

17. Chowdhury, R. and R. K. Chaudhary, "An approach to generate circular polarization in a modified cylindrical-shaped dielectric resonator antenna using PMC boundary approximation," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 9, 1727-1731, Sep. 2018.

18. Mashhadi, S. H. H., Y. C. Jiao, and J. Chen, "Broadbeam cylindrical dielectric resonator antenna," IEEE Access, Vol. 7, 112653-112661, Aug. 2019.

19. Seko, M. H. and F. S. Correra, "Excitation of dielectric resonator antennas by loop coupling," Excitation of dielectric resonator antennas by loop coupling, Vol. 18, No. 4, 656-658, Apr. 2019.

20. Kremer, H. I., K. W. Leung, and M. W. K. Lee, "Compact wideband low-profile single-and dual-polarized dielectric resonator antennas using dielectric and air vias," IEEE Trans. Antennas Propag., Vol. 69, No. 12, 8182-8193, Jun. 2021.

21. Harrington, R. F., Time-harmonic Electromagnetic Field, McGraw-Hill, New York, 1961.