1. Xu, X., X. Yuan, H. Li, et al. "Design of a G-band extended interaction klystron based on a three-coupling-hole structure," IEEE Trans. Electron Devices, Vol. 69, No. 3, 1368-1373, 2022, doi: 10.1109/ted.2021.3138840.
doi:10.1109/TED.2021.3138840 Google Scholar
2. Guo, N., Q. Xue, Z. Qu, et al. "Study of a 0.34-THz ladder-type extended interaction klystron with narrow coupling cavities," IEEE Trans. Electron Devices, Vol. 68, No. 11, 5851-5857, 2021, doi: 10.1109/TED.2021.3114392.
doi:10.1109/TED.2021.3114392 Google Scholar
3. Chodorow, M. and T. Wessel-Berg, "A high-efficiency klystron with distributed interaction," IRE Transactions on Electron Devices, Vol. 8, No. 1, 44-55, 1961.
doi:10.1109/T-ED.1961.14708 Google Scholar
4. Yaogen, D., Design, Manufacure and Application of High Power Klystron, National Defense Industry Press, 2010.
5. Zhao, D., W. Gu, X. Hou, G. Liu, Q. Xue, and Z. Zhang, "Demonstration of a high-power Ka-band extended interaction klystron," IEEE Trans. Electron Devices, Vol. 67, No. 9, 3788-3794, 2020, doi: 10.1109/TED.2020.3008881.
doi:10.1109/TED.2020.3008881 Google Scholar
6. Wei Yuan, C. and C. Kwo Ray, "A high-duty Ka-band extended interaction klystron," 2008 IEEE International Vacuum Electronics Conference, 201-202, April 22-24, 2008, doi: 10.1109/IVELEC.2008.4556337. Google Scholar
7. Cai, J. C., I. Syratchev, and G. Burt, "Design study of a high-power Ka-band high-order-mode multibeam klystron," IEEE Trans. Electron Devices, Vol. 67, No. 12, 1-7, 2020, doi: 10.1109/TED.2020.3028348.
doi:10.1109/TED.2020.3028348 Google Scholar
8. John Pasour, E. W., K. T. Nguyen, A. Balkcum, F. N. Wood, R. E. Myers, and F. Baruch Levush, "Demonstration of a multikilowatt, solenoidally focused sheet beam amplier at 94 GHz," IEEE Trans. Electron Devices, Vol. 61, No. 6, 1630-1636, 2014, doi: 10.1109/TED.2013.2295771.
doi:10.1109/TED.2013.2295771 Google Scholar
9. Gamzina, D., L. R. Barnett, B. Ravani, and N. C. Luhmann, "Mechanical design and manufacturing of W-band sheet beam klystron," IEEE Trans. Electron Devices, 1-8, 2017, doi: 10.1109/TED.2017.2690642. Google Scholar
10. Fujisawa, K., "The Laddertron - A new millimeter wave power oscillator," IEEE Trans. Electron Devices, Vol. 11, No. 8, 381-391, 1964.
doi:10.1109/T-ED.1964.15346 Google Scholar
11. Li, S., C. Ruan, A. K. Fahad, P. Wang, Z. Zhang, and W. He, "Novel coupling cavities for improving the performance of G-band ladder-type multigap extended interaction klystrons," IEEE Transactions on Plasma Science, Vol. 48, No. 5, 1350-1356, 2020.
doi:10.1109/TPS.2020.2982957 Google Scholar
12. Xie, B., R. Zhang, Y. Wang, et al. "Design of a high-power V-band klystron with internal coupling multigap cavity," IEEE Trans. Electron Devices, Vol. 69, No. 5, 2644-2649, 2022, doi: 10.1109/TED.2022.3159260.
doi:10.1109/TED.2022.3159260 Google Scholar
13. Li, R., C. Ruan, A. K. Fahad, C. Zhang, and S. Li, "Broadband and high-power terahertz radiation source based on extended interaction klystron," Scientific Reports, Vol. 9, No. 1, 2019.
doi:10.1038/s41598-019-39456-z Google Scholar
14. Li, R., C. Ruan, and H. Zhang, "Design and optimization of G-band extended interaction klystron with high output power," Physics of Plasmas, Vol. 25, No. 3, 033107, 2018, doi: 10.1063/1.5012018.
doi:10.1063/1.5012018 Google Scholar
15. Shin, Y. M., J. X. Wang, L. R. Barnett, and N. C. Luhmann, "Particle-in-cell simulation analysis of a multicavity W-band sheet beam klystron," IEEE Trans. Electron Devices, Vol. 58, No. 1, 251-258, 2010.
doi:10.1109/TED.2010.2082544 Google Scholar