1. Faenzi, M., G. Minatti, D. Gonzalez-Ovejero, F. Caminita, E. Martini, C. D. Giovampaola, and S. Maci, "Metasurface antennas: New models, applications and realizations," Scientific Reports, Vol. 9, No. 1, 1-14, 2019.
doi:10.1038/s41598-019-46522-z Google Scholar
2. Nadi, M., H. Rajabalipanah, A. Cheldavi, and A. Abdolali, "Flexible manipulation of emitting beams using single-aperture circularly polarized digital metasurface antennas: Multibeam radiation toward vortex-beam generation," Advanced Theory and Simulations, Vol. 3, No. 4, 1900225, 2020.
doi:10.1002/adts.201900225 Google Scholar
3. Rajabalipanah, H., M. Nadi, A. Abdolali, and A. Cheldavi, "Highly efficient metaradiators with circular polarization," Journal of Applied Physics, Vol. 128, No. 11, 114503, 2020.
doi:10.1063/5.0011652 Google Scholar
4. Nadi, M., S. H. Sedighy, and M. Khalaj-Amirhosseini, "Ultra wideband radar cross section reduction by using non-resonant unit cells," Scientific Reports, Vol. 10, No. 1, 1-10, 2020.
doi:10.1038/s41598-020-64362-0 Google Scholar
5. Khalaj-Amirhosseini, M. and M. Nadi-Abiz, "Reducing the sidelobe level of reflectarray antennas using phase perturbation method," Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 2, 153-157, 2020. Google Scholar
6. Hashemi, S. and A. Abdolali, "Room shielding with frequency-selective surfaces for electromagnetic health application," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 291-298, 2017.
doi:10.1017/S1759078716000015 Google Scholar
7. Mamedes, D. F., A. G. Neto, J. C. e Silva, and J. Bornemann, "Design of reconfigurable frequency-selective surfaces including the pin diode threshold region," IET Microwaves, Antennas & Propagation, Vol. 12, No. 9, 1483-1486, 2018.
doi:10.1049/iet-map.2017.0761 Google Scholar
8. Fallah, M. and M. H. Vadjed-Samiei, "Designing a bandpass frequency selective surface based on an analytical approach using hexagonal patch-strip unit cell," Electromagnetics, Vol. 35, No. 1, 25-39, 2015.
doi:10.1080/02726343.2015.971662 Google Scholar
9. Kocakaya, A. and G. Cakir, "Novel angular-independent higher order band-stop frequency selective surface for X-band applications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 15-22, 2018.
doi:10.1049/iet-map.2016.0907 Google Scholar
10. Lee, I. G. and I. P. Hong, "3D frequency selective surface for stable angle of incidence," Electronics Letters, Vol. 50, No. 6, 423-424, 2014.
doi:10.1049/el.2014.0053 Google Scholar
11. Zhao, Z., A. Zhang, X. Chen, G. Peng, J. Li, H. Shi, and A. A. Kishk, "Bandpass FSS with zeros adjustable quasi-elliptic response," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1184-1188, 2019.
doi:10.1109/LAWP.2019.2911908 Google Scholar
12. Azemi, S. N., K. Ghorbani, and W. S. T. Rowe, "A reconfigurable FSS using a spring resonator element," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 781-784, 2013.
doi:10.1109/LAWP.2013.2270950 Google Scholar
13. Fontoura, L. C. M. M., H. W. De Castro Lins, A. S. Bertuleza, A. G. Dassuncao, and A. G. Neto, "Synthesis of multiband frequency selective surfaces using machine learning with the decision tree algorithm," IEEE Access, Vol. 9, 85785-85794, 2021.
doi:10.1109/ACCESS.2021.3086777 Google Scholar
14. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567 Google Scholar
15. Zheng, S., Y. Yin, J. Fan, X. Yang, B. Li, and W. Liu, "Analysis of miniature frequency selective surfaces based on fractal antenna-filter-antenna arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 240-243, 2012.
doi:10.1109/LAWP.2012.2189749 Google Scholar
16. Yeganeh, A. N., S. Mohammad-Ali-Nezhad, S. H. Najmolhoda, and S. H. Sedighy, "Dual-band, dual-polarized, and compact frequency selective surface," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21810, 2019. Google Scholar
17. Wei, P.-S., C.-N. Chiu, and T.-L. Wu, "Design and analysis of an ultraminiaturized frequency selective surface with two arbitrary stopbands," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 5, 1447-1456, 2018.
doi:10.1109/TEMC.2018.2864546 Google Scholar
18. Zhao, P.-C., Z.-Y. Zong, W. Wu, B. Li, and D.-G. Fang, "Miniaturized-element bandpass FSS by loading capacitive structures," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3539-3544, 2019.
doi:10.1109/TAP.2019.2902633 Google Scholar
19. Ghosh, S. and K. V. Srivastava, "An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 3, 218-220, 2017.
doi:10.1109/LMWC.2017.2661683 Google Scholar
20. Yan, M., S. Qu, J. Wang, J. Zhang, H. Zhou, H. Chen, and L. Zheng, "A miniaturized dual-band FSS with stable resonance frequencies of 2.4 GHz/5 GHz for WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 895-898, 2014.
doi:10.1109/LAWP.2014.2320931 Google Scholar
21. Al-Joumayly, M. A. and N. Behdad, "A generalized method for synthesizing low-profile, bandpass frequency selective surfaces with non-resonant constituting elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4033-4041, 2010.
doi:10.1109/TAP.2010.2078474 Google Scholar
22. Hojjati, A., M. Soleimani, V. Nayyeri, and O. M. Ramahi, "Ternary optimization for designing metasurfaces," Scientific Reports, Vol. 11, No. 1, 1-9, 2021.
doi:10.1038/s41598-021-96564-5 Google Scholar