Vol. 110
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2023-03-30
Low-Cost Substrate Integrated Waveguide Equalizer Based on the Indium Tin Oxides Conductive Film
By
Progress In Electromagnetics Research Letters, Vol. 110, 21-28, 2023
Abstract
A low-cost and mechanical reconfigurable substrate integrate waveguide (SIW) equalizer is presented and studied in this work. Different from the previous SIW equalizers using Tantalum Nitride (TaN) or absorbing material as the resistive element, the indium tin oxides (ITO) are introduced into SIW equalizer. The absorbing material will deform under uneven pressure due to the structural softness of material, resulting in instable equalizing values. Compared with the absorbing material, ITO provides more structural stability, excellent high frequency characteristic, and can be easily integrated with traditional printed circuit board (PCB). Furthermore, an equalizer with reconfigurable equalizing values can be realized by adjusting ITO materials with different impedances. A SIW equalizer based on the ITO Conductive Film, operating from 26 to 40 GHz, has been designed, fabricated and experimentally verified. For measurement results, the return losses are better than -17.4 dB with 3, 6, and 10 dB equalizing values respectively over the entire Ka-band, and the insertion losses at the frequency point of 40 GHz are -2.89 dB, -4.80 dB, and -7.37 dB, respectively. The proposed equalizer presents the advantages of mechanical reconfigurable, low cost, and high stability. In addition, ITO Conductive Film is a good candidate for the design of high millimeter-wave band equalizer.
Citation
Jun Dong, Fan Yin, Taixing Jiang, Xiang Zhong, Yang Yang, and Hao Peng, "Low-Cost Substrate Integrated Waveguide Equalizer Based on the Indium Tin Oxides Conductive Film," Progress In Electromagnetics Research Letters, Vol. 110, 21-28, 2023.
doi:10.2528/PIERL23013001
References

1. Bera, C. S., "Amplitude tilt active equalizer for frequency and temperature compensation," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 7, 344-346, 2011.
doi:10.1109/LMWC.2011.2152385

2. Zhou, T. and J. Huang, "A novel wideband microwave gain equalizer using SIR branch lines," IEEE Asia-Pacific Conference on Antennas and Propagation, 2014.

3. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012.
doi:10.2528/PIERL12052309

4. He, H. H. and X. Lei, "Microwave LTCC equalizer based on composite right/left-handed structure," 2015 IEEE International Conference on Communication Problem-Solving (ICCP), 274-277, IEEE, 2016.

5. Zhou, P., X. Xie, J. Xie, et al. "A new research of broadband microwave gain equalizer," International Workshop on Microwave & Millimeter Wave Circuits & System Technology, 1-4, IEEE, 2012.

6. Xu, J., D. Zhou, D. Lv, et al. "A novel microwave equalizer using substrate integrated waveguide concept," 2011 China-Japan Joint Microwave Conference, 1-3, IEEE, 2011.

7. Wang, S., Y. Wang, D. Zhang, et al. "Design of tunable equalizers using multilayered half mode substrate integrated waveguide structures added absorbing pillars," Advances in Materials Science and Engineering, Vol. 4, 1-7, 2015.

8. Peng, H., F. Zhao, J. Dong, et al. "Substrate integrated waveguide equalizers and attenuators with surface resistance," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 4, 1487-1495, 2020.
doi:10.1109/TMTT.2019.2958267

9. Peng, H., S. Huang, Y. Wu, et al. "Low cost/insertion loss substrate-integrated waveguide equalizer based on absorbing materials," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 11, No. 11, 1948-1954, 2021.
doi:10.1109/TCPMT.2021.3113978

10. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory & Techniques, Vol. 53, No. 1, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

11. Kim, H., J. S. Horwitz, A. Pique, et al. "Effect of film thickness on the properties of indium tin oxide thin film grown by pulsed-laser deposition for organic light-emitting diodes," Journal of Applied Physics, Vol. 88, No. 10, 6021-6025, 2000.
doi:10.1063/1.1318368

12. Kim, H., C. M. Gilmore, A. Pique, et al. "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," Journal of Applied Physics, Vol. 86, No. 11, 6451-6451, 1999.
doi:10.1063/1.371708

13. Li, D., X. Hu, B. Gao, W.-Y. Yin, H. Chen, and H. Qian, "Highly transparent tunable microwave perfect absorption for broadband microwave shielding," Progress In Electromagnetics Research, Vol. 176, 35-44, 2022.

14. Sun, G., B. Muneer, Q. Zhu, et al. "A study of microstrip antenna made of transparent ITO films," IEEE Antennas and Propagation Society International Symposium, 1867-1868, 2014.

15. Jia, W., M. Liu, Y. Lu, et al. "Broadband terahertz wave generation from an epsilon-near-zero material," Light: Science & Applications, Vol. 10, No. 11, 2021.

16. Lu, Y., X. Feng, Q. Wang, et al. "Integrated terahertz generator-manipulators using epsilon-near-zero-hybrid nonlinear metasurfaces," Nano Letters, Vol. 18, No. 21, 7699-7707, 2021.
doi:10.1021/acs.nanolett.1c02372