Vol. 132
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-05-06
Research and Design of a Polarization Multiplexed 1-Bit Reconfigurable Metasurface for Dynamic Focusing
By
Progress In Electromagnetics Research C, Vol. 132, 241-253, 2023
Abstract
To solve the problems of traditional reflective metasurfaces that cannot change the focal position and have simple functions, a polarization multiplexed 1-bit reconfigurable metasurface is proposed. It can realize the independent focusing characteristics of the x-direction polarization and y-direction polarization incident waves. The metasurface unit consists of a layer of dielectric substrate with a thickness of 0.055λ, a metal element embedded with a pair of PIN diodes, and ground. Two diagonal slits on the ground can not only be used as a reflection ground to keep high reflection, but also behave as a bias control line to control the voltage to change the state of the PIN diodes. Optimizing the structure parameters of the metasurface unit, the reflection phase can be manipulated binarily between 0 and 180°, corresponding to ON and OFF states, respectively. Based on the principle of quasi-optical path, a polarization multiplexed 1-bit reconfigurable metasurface with independent dynamic focusing characteristics at 11GHz is designed. On this basis, by changing the polarization direction of the incident wave, the dual-focus distribution with different power ratio can be obtained. The proposed 1-bit reconfigurable metasurface has no multilayer metal elements and complex feeding structures, and has the characteristics of a simple structure, low profile, and multifunction. At the same time, it enhances the utilization of metasurface array and provides a higher degree of freedom for wireless power transmission applications in future.
Citation
Bo Yin, Zhu Xu, Shubin Wang, and Maohai Ran, "Research and Design of a Polarization Multiplexed 1-Bit Reconfigurable Metasurface for Dynamic Focusing," Progress In Electromagnetics Research C, Vol. 132, 241-253, 2023.
doi:10.2528/PIERC23022703
References

1. Sri Nagini, K. B. S. and D. S. Chandu, "Wideband and tunable reflective cross-polarization conversion metasurface for terahertz applications," IEEE Photonics Journal, Vol. 14, No. 5, 1-8, Oct. 2022.

2. Zhang, B., C. Jin, L. Yin, Q. Lv, P. Zhang, and B. Tian, "Diffusive-Reflective metasurface with dual independent reflection bands for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 3, 635-639, Mar. 2022.
doi:10.1109/LAWP.2022.3140930

3. Jia, Y., G. Jiang, Y. Liu, and Y. Zhong, "Beam scanning for dual-polarized antenna with active reflection metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1722-1726, Sept. 2022.
doi:10.1109/LAWP.2022.3176427

4. Li, H., G. Li, J. Wang, et al. "Wideband multifunctional metasurface for polarization conversion and gain enhancement," Progress In Electromagnetics Research, Vol. 155, 115-125, 2016.
doi:10.2528/PIER16012011

5. Deng, G., Z. Yu, J. Yang, Z. Yin, Y. Li, and B. Chi, "A miniaturized 3-D metamaterial absorber with wide angle stability," IEEE Microwave and Wireless Components Letters, Vol. 32, No. 9, 1111-1114, Sept. 2022.
doi:10.1109/LMWC.2022.3169599

6. Chen, A. and F. Monticone, "Active scattering-cancellation cloaking: Broadband invisibility and stability constraints," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1655-1664, Mar. 2020.
doi:10.1109/TAP.2019.2948528

7. Wu, J. L., Y. M. Pan, and S. Y. Zheng, "Design of single-layer polarization-dependent transmissive and reflective focusing metasurface," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 11, 7637-7646, Nov. 2021.
doi:10.1109/TAP.2021.3076263

8. Sherman, J., "Properties of focused apertures in the fresnel region," IEEE Transactions on Antennas and Propagation, Vol. 10, No. 4, 399-408, Jul. 1962.
doi:10.1109/TAP.1962.1137900

9. Salah, M., M. M. Elsherbini, and O. A. Omer, "RIS-focus: On the optimal placement of the focal plane for outdoor beam routing," IEEE Access, Vol. 10, 53053-53065, 2022.
doi:10.1109/ACCESS.2022.3174082

10. Yu, S., H. Liu, and L. Li, "Design of near-field focused metasurface for high-efficient wireless power transfer with multifocus characteristics," IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, 3993-4002, May 2019.
doi:10.1109/TIE.2018.2815991

11. Zhang, P., L. Li, X. Zhang, et al. "Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer," IEEE Access, Vol. 7, 110387-110399, 2019.
doi:10.1109/ACCESS.2019.2934135

12. Wang, D., D. Wang, X. Sun, et al. "Design of a reflective metasurface for near-field focusing," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 323-324, 2021.

13. Huang, H. and J. Zhang, "High-efficiency multifunction metasurface based on polarization sensitivity," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1508-1512, 2021.
doi:10.1109/LAWP.2021.3089283

14. Shang, G., H. Li, Z. Wang, et al. "Coding metasurface holography with polarization multiplexed functionality," Journal of Applied Physics, Vol. 129, 035304, 2021.
doi:10.1063/5.0036027

15. Yong, Z., Y. Li, and Y. Zhou, "Dynamic manipulation of electromagnetic waves based on 1-bit reconfigurable metasurface," 2022 IEEE 5th International Conference on Electronic Information and Communication Technology, 519-522, 2022.

16. Yurduseven, O., D. L. Marks, J. N. Gollub, and D. R. Smith, "Design and analysis of a reconfigurable holographic metasurface aperture for dynamic focusing in the fresnel zone," IEEE Access, Vol. 5, 15055-15065, 2017.
doi:10.1109/ACCESS.2017.2712659

17. Han, J., L. Li, X. Ma, et al. "Adaptively smart wireless power transfer using 2-bit programmable metasurface," IEEE Transactions on Industrial Electronics, Vol. 69, No. 8, 8524-8534, 2022.
doi:10.1109/TIE.2021.3105988

18. Gao, X., W. L. Yang, H. F. Ma, Q. Cheng, X. H. Yu, and T. J. Cui, "A reconfigurable broadband polarization converter based on an active metasurface," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 66, 6086-6095, Nov. 2018.

19. Ma, Q., W. Gao, Q. Xiao, et al. "Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform," eLight, Vol. 2, No. 1, 11, 2022.
doi:10.1186/s43593-022-00019-x

20. Li, L., H. Zhao, C. Liu, et al. "Intelligent metasurfaces: Control, communication and computing," eLight, Vol. 2, 7, 2022.
doi:10.1186/s43593-022-00013-3

21. Ratni, B., Z. Wang, K. Zhang, et al. "Reconfigurable reflective metasurface for dynamic control of focal point position," 2019 13th European Conference on Antennas and Propagation, 1-3, 2019.

22. Yu, W. and H. Lin, "Application of 2-bit reconfigurable reflectarray in near-field wireless power transmission," 2021 International Conference on Microwave and Millimeter Wave Technology, 1-3, 2021.

23. Kraus, J. D., Antenna, Publishing House of Electronics Industry, 2015.

24. Tran, N. M., M. M. Amri., J. H. Par, et al. "A novel coding metasurface for wireless power transfer applications," Energies, Vol. 12, 4488, 2019.
doi:10.3390/en12234488