Vol. 135
Latest Volume
All Volumes
PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-29
Interpretation of the Solution of Maxwell's Equations for a Moving Hertzian Dipole
By
Progress In Electromagnetics Research C, Vol. 135, 121-130, 2023
Abstract
Owing to the principle of relativity, the present state of knowledge explicitly allows Maxwell's equations to be solved not only in the rest frame of an electromagnetic transmitter but also directly in the rest frame of the receiver without use of the Lorentz transformation and the Lorentz force. Recently, such a calculation was first performed for the Hertzian dipole. The analysis of the resulting formula breaks new scientific ground and indicates that Maxwell's equations predict that electromagnetic waves in vacuum propagate at the speed of light, notably for each receiver, even when these receivers have relative velocities with respect to each other. Although this paradoxical phenomenon was expected, the finding that Maxwell's equations nevertheless predict a classical Doppler effect was unexpected and indicates inconsistent or not yet fully understood aspects of canonical Lorentz-Einstein electrodynamics consisting of Maxwell's equations, Lorentz force and Lorentz transformation.
Citation
Steffen Kühn, "Interpretation of the Solution of Maxwell's Equations for a Moving Hertzian Dipole," Progress In Electromagnetics Research C, Vol. 135, 121-130, 2023.
doi:10.2528/PIERC23041404
References

1. Jackson, J. D., Classical Electrodynamics, 3rd Edition, Wiley, New York, NY, 1999.

2. Kuhn, S., "Inhomogeneous wave equation, Lienard-Wiechert potentials, and Hertzian dipoles in Weber electrodynamics," Electromagnetics, Vol. 42, No. 8, 571-593, 2022.
doi:10.1080/02726343.2022.2161709

3. Ives, H. E. and G. R. Stilwell, "An experimental study of the rate of a moving atomic clock," J. Opt. Soc. Am., Vol. 28, No. 7, 215-226, Jul. 1938.
doi:10.1364/JOSA.28.000215

4. Ives, H. E. and G. R. Stilwell, "An experimental study of the rate of a moving atomic clock. II," J. Opt. Soc. Am., Vol. 31, No. 5, 369-374, May 1941.
doi:10.1364/JOSA.31.000369

5. Pound, R. V. and G. A. Rebka, "Gravitational red-shift in nuclear resonance," Phys. Rev. Lett., Vol. 3, 439-441, Nov. 1959.

6. Kundig, W., "Measurement of the transverse Doppler effect in an accelerated system," Phys. Rev., Vol. 129, No. 6, 2371-2375, Mar. 1963.
doi:10.1103/PhysRev.129.2371

7. Hafele, J. C. and R. E. Keating, "Around-the-world atomic clocks: Predicted relativistic time gains," Science, Vol. 177, No. 4044, 166-168, 1972.
doi:10.1126/science.177.4044.166

8. Bailey, K. J., F. Borer, H. Combley, F. Drumm, F. Krienen, E. Lange, W. Picasso, F. J. M. von Ruden, J. H. Farley, W. Field, Flegel, and P. M. Hattersley, "Measurements of relativistic time dilatation for positive and negative muons in a circular orbit," Nature, Vol. 268, 301-305, 1977.
doi:10.1038/268301a0

9. McGowan, R. W., D. M. Giltner, S. J. Sternberg, and S. A. Lee, "New measurement of the relativistic Doppler shift in neon," Phys. Rev. Lett., Vol. 70, 251-254, Jan. 1993.
doi:10.1103/PhysRevLett.70.251

10. Kuhn, S., "Analysis of a stochastic emission theory regarding its ability to explain the effects of special relativity," Journal of Electromagnetic Analysis and Applications, Vol. 12, 169-187, 2020.

11. Baumgaertel, C., "Aspects of Weber electrodynamics,", Ph.D. dissertation, University of Liverpool, 2022.