1. Beigi, P., M. Rezvani, Y. Zehforoosh, J. Nourinia, and B. Heydarpanah, "A tiny EBG-based structure multiband MIMO antenna with high isolation for LTE/WLAN and C/X bands applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 3, Mar. 2020, doi: 10.1002/mmce.22104.
doi:10.1002/mmce.22104 Google Scholar
2. Wu, W., B. Yuan, and A.Wu, "A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures," International Journal of Antennas and Propagation, Vol. 2018, 1-10, 2018, doi: 10.1155/2018/8490740. Google Scholar
3. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Edition, John Wiley, Hoboken, NJ, 2005.
4. Pozar, D. M., Microwave Engineering, 2nd Edition, Vol. 736, Wiley, New York, 1998.
5. Wajid, A., A. Ahmad, S. Ullah, D. Choi, and F. U. Islam, "Performance analysis of wearable dual- band patch antenna based on EBG and SRR surfaces," Sensors, Vol. 22, No. 14, 5208, 2022, doi: 10.3390/s22145208.
doi:10.3390/s22145208 Google Scholar
6. Rmili, L., A. Asselman, A. Kaabal, S. Dellaoui, and M. El Halaoui, "High gain metallic electromagnetic band gap antenna for WLAN applications," Mobile, Secure, and Programmable Networking, E. Renault, S. Boumerdassi, C. Leghris, and S. Bouzefrane, 82-87, Springer International Publishing, Cham, 2019, doi: 10.1007/978-3-030-22885-9_8. Google Scholar
7. Bora, P., P. Pardhasaradhi, and B. Madhav, "Design and analysis of EBG antenna for Wi-Fi, LTE, and WLAN applications," ACES, Vol. 35, No. 9, 1030-1036, Nov. 2020, doi: 10.47037/2020.ACES.J.350908.
doi:10.47037/2020.ACES.J.350908 Google Scholar
8. Hadj Sadok, M., Y. Lamhene, and S. Berkani, "High-gain low-profile EBG resonator antenna based on quasi-icosahedral shapes," J. Electron. Mater., Vol. 52, No. 1, 140-152, Jan. 2023, doi: 10.1007/s11664-022-10046-6.
doi:10.1007/s11664-022-10046-6 Google Scholar
9. Wang, R., B.-Z. Wang, G.-F. Gao, X. Ding, and Z.-P. Wang, "Low-profile pattern-reconfigurable vertically polarized endre antenna with magnetic-current radiators," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 829-832, 2018, doi: 10.1109/LAWP.2018.2817682.
doi:10.1109/LAWP.2018.2817682 Google Scholar
10. Karthikeya, G. S., S. Kaundinya, and S. A. Hariprasad, "Dual band hexagonal microstrip antenna loaded with hexagonal and cylindrical EBG," 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), 385-390, IEEE, Danang, Vietnam, 2014, doi: 10.1109/CCE.2014.6916734.
doi:10.1109/CCE.2014.6916734 Google Scholar
11. Zoubiri, B., A. Mayouf, F. Mayouf, S. Abdelkebir, and T. Devers, "Enhancement of front-to-back ratio and gain of rectangular microstrip antenna using novel elliptical EBG structure," Microsystem Technologies, Vol. 24, No. 8, 3241-3244, 2018, doi: 10.1007/s00542-018-3855-9.
doi:10.1007/s00542-018-3855-9 Google Scholar
12. Guo, H. and W. Geyi, "Design of bidirectional antenna array with adjustable endre gains," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1656-1660, 2019, doi: 10.1109/LAWP.2019.2926525.
doi:10.1109/LAWP.2019.2926525 Google Scholar
13. Hassan, M. U., F. Arshad, S. I. Naqvi, Y. Amin, and H. Tenhunen, "A compact flexible and frequency reconfigurable antenna for quintuple applications," Radioengineering, Vol. 26, No. 3, 655-661, Sept. 2017, doi: 10.13164/re.2017.0655.
doi:10.13164/re.2017.0655 Google Scholar
14. Boudaghi, H., M. Azarmanesh, and M. Mehranpour, "A frequency-reconfigurable monopole antenna using switchable slotted ground structure," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 655-658, 2012, doi: 10.1109/LAWP.2012.2204030.
doi:10.1109/LAWP.2012.2204030 Google Scholar
15. Benikhlef, M. F. and M. N. Boukli-Hacen, "Effects of two dimensional electromagnetic bandgap (EBG) structures on the performance of microstrip patch antenna arrays,", 2016, https://www.semanticscholar.org/paper/Effects-of-Two-Dimensional-Electromagnetic-Bandgap-Benikhlef-Boukli-Hacen/eefc878e62763dd0d42c98f813ac65ec97d3e1b4 (consulte le 24 Mars 2023). Google Scholar
16. Choubani, M., F. Choubani, A. Gharsallah, J. David, and N. E. Mastorakis, "Analysis and design of electromagnetic band gap structures with stratied and inhomogeneous media," Optics Communications, Vol. 283, No. 22, 4499-4504, Nov. 2010, doi: 10.1016/j.optcom.2010.04.078.
doi:10.1016/j.optcom.2010.04.078 Google Scholar
17. Samsuzzaman, M., M. T. Islam, N. Misran, and M. A. M. Ali, "Dual band X shape microstrip patch antenna for satellite applications," Procedia Technology, Vol. 11, 1223-1228, 2013, doi: 10.1016/j.protcy.2013.12.317.
doi:10.1016/j.protcy.2013.12.317 Google Scholar
18. Raimondo, L., F. De Paulis, and A. Orlandi, "A simple and efficient design procedure for planar electromagnetic bandgap structures on printed circuit boards," IEEE Transactions on Electromagnetic Compatibility, Vol. 53, No. 2, 482-490, 2011, doi: 10.1109/TEMC.2010.2051549.
doi:10.1109/TEMC.2010.2051549 Google Scholar
19. Viswanadha, K. and N. S. Raghava, "Design and analysis of a compact dual-band serpentine- shaped patch antenna with folded stub lines for C- and X-band applications," Journal of Communications Technology and Electronics, Vol. 65, No. 10, 1147-1160, Oct. 2020, doi: 10.1134/S106422692010006X.
doi:10.1134/S106422692010006X Google Scholar
20. Li, R., C. Wu, X. Sun, Y. Zhao, and W. Luo, "An EBG-based triple-band wearable antenna for WBAN applications," Micromachines, Vol. 13, No. 11, 1938, Nov. 2022, doi: 10.3390/mi13111938. Google Scholar