1. Gabriel, C., S. Gabriel, and Y. E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Physics in Medicine & Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
2. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine & Biology, Vol. 41, No. 11, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
3. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine & Biology, Vol. 41, No. 11, 22712293, 1996. Google Scholar
4. Nelson, S. O., S. Trabelsi, and A. W. Kraszewski, "Advances in sensing grain moisture content by microwave measurements," Transactions of the ASAE, Vol. 41, No. 2, 483-487, 1998.
doi:10.13031/2013.17169 Google Scholar
5. Guo, W., S. O. Nelson, S. Trabelsi, and S. J. Kays, "10-1800 MHz dielectric properties of fresh apples during storage," J. of Food Engg., Vol. 83, No. 4, 562-569, 2007.
doi:10.1016/j.jfoodeng.2007.04.009 Google Scholar
6. Nelson, S. O. and S. Trabelsi, "Dielectric spectroscopy measurements on fruit, meat, and grain," Trans. of the ASABE, Vol. 51, No. 5, 1829-1834, 2008.
doi:10.13031/2013.25298 Google Scholar
7. Kundu, A. and B. Gupta, "Broadband dielectric properties measurement of some vegetables and fruits using open ended coaxial probe technique," Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), 480-484, IEEE, Kolkata, 2014. Google Scholar
8. Gandhi, O. P., "Yes the children are more exposed to radiofrequency energy from mobile telephones than adults," IEEE Access, Vol. 3, 985-988, 2015.
doi:10.1109/ACCESS.2015.2438782 Google Scholar
9. Takei, R., T. Nagaoka, K. Saito, S. Watanabe, and M. Takahashi, "SAR variation due to exposure from a smartphone held at various positions near the torso," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 747-753, 2017.
doi:10.1109/TEMC.2016.2642201 Google Scholar
10. Yelkenci, T., "Effects of metallic objects on specific absorption rate in the human head for 915 and 1900 MHz mobile phones," Frequenz, Vol. 60, No. 3-4, 46-50, 2006.
doi:10.1515/FREQ.2006.60.3-4.46 Google Scholar
11. Christ, A. K., T. Samaras, C. Goiceanu, and N. Kuster, "The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHz to 6 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2188-2195, 2006.
doi:10.1109/TMTT.2006.872789 Google Scholar
12. Yelkenci, T. and S. Paker, "The effects of frequency, polarization, direction and metallic objects on the SAR values in a human head model for plane wave exposure (500-2500 MHz)," Frequenz, Vol. 60, No. 11-12, 215-219, 2006.
doi:10.1515/FREQ.2006.60.11-12.215 Google Scholar
13. Cooper, J. and V. Hombach, "The specific absorption rate in a spherical head model from a dipole with metallic walls nearby," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 4, 377-382, 1998.
doi:10.1109/15.736225 Google Scholar
14. Meier, K., V. Hombach, R. Kastle, R. Y.-S. Tay, and N. Kuster, "The dependence of electromagnetic energy absorption upon human-head modeling at 1800 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 11, 2058-2062, 1997.
doi:10.1109/22.644237 Google Scholar
15. Mirotznik, M. S., E. Cheever, and K. R. Foster, "High-resolution measurements of the specific absorption rate produced by small antennas in lossy media," IEEE Transactions on Instrumentation and Measurement, Vol. 45, No. 3, 754-756, 1996.
doi:10.1109/19.494594 Google Scholar
16. Kraszewskl, A., M. A. Stuchly, S. S. Stuchly, G. Hartsgrove, and D. Adamski, "Specific absorption rate distribution in a full-scale model of man at 350 MHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 8, 779-783, 1984.
doi:10.1109/TMTT.1984.1132772 Google Scholar
17. Kaszuba-Zwoinska, J., J. Gremba, B. Ga ldzinska-Calik, K. Wojcik-Piotrowicz, and P. J. Thor, "Electromagnetic field induced biological effects in humans," Przegl. Lek., Vol. 72, No. 11, 636-641, 2015. Google Scholar
18. Kivrak, E. G., K. K. Yurt, A. A. Kaplan, I. Alkan, and G. Altun, "Effects of electromagnetic fields exposure on the antioxidant defense system," J. Microsc. Ultrastruct., Vol. 5, No. 4, 167-176, 2017.
doi:10.1016/j.jmau.2017.07.003 Google Scholar
19. Agarwal, A., N. R. Desai, K. Makker, A. Varghese, R. Mouradi, E. Sabanegh, and R. Sharma, "Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study," Fertil. Steril., Vol. 92, No. 4, 1318-1325, 2009.
doi:10.1016/j.fertnstert.2008.08.022 Google Scholar
20. Lewicka, M., G. A. Henrykowska, K. Pacholski, J. Smigielski, M. Rutkowski, M. Dziedziczak-Buczynska, and A. Buczynski, "The effect of electromagnetic radiation emitted by display screens on cell oxygen metabolism --- in vitro studies," Arch. Med. Sci., Vol. 11, No. 6, 1330-1339, 2015.
doi:10.5114/aoms.2015.56362 Google Scholar
21. Lu, Y. S., B. T. Huang, Y. X. Huang, and , "Reactive oxygen species formation and apoptosis in human peripheral blood mononuclear cell induced by 900 MHz mobile phone radiation," Oxid Med. Cell Longev., Article ID 740280, 2012. Google Scholar
22. De Iuliis, G. N., R. J. Newey, B. V. King, and R. J. Aitken, "Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro," PLoS One, Vol. 4, No. 7, 2009 (Erratum in: PLoS One, Vol. 8, No. 3, 2013.).
doi:10.1371/journal.pone.0006446 Google Scholar
23. Sefiebakht, Y., A. A. Moosavi-Movahedi, S. Hosseinkhani, F. Khodagholi, M. Torkzadeh-Mahani, F. Foolad, and R. Faraji-Dana, "Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells," Photochem. Photobiol. Sci., Vol. 13, No. 7, 1082-1092, 2014.
doi:10.1039/c3pp50451d Google Scholar
24. Behari, J., "Biological responses of mobile phone frequency exposure," Indian J. Exp. Biol., Vol. 48, No. 10, 959-981, 2010. Google Scholar
25. Duhaini, I., "The effects of electromagnetic fields on human health," Physica Medica, Vol. 32, No. 3, 213, 2016.
doi:10.1016/j.ejmp.2016.07.720 Google Scholar
26. Hu, C., H. Zuo, and Y. Li, "Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain," Frontiers in Public Health, Vol. 9, 1-15, Article ID 691880, 2021. Google Scholar
27. Kundu, A. and B. Gupta, "Comparative SAR analysis of some Indian fruits as per the revised RF exposure guideline," IETE Journal of Research, Vol. 60, No. 4, 296-302, 2014.
doi:10.1080/03772063.2014.961981 Google Scholar
28. Kundu, A., "Speccific absorption rate evaluation in apple exposed to RF radiation from GSM mobile towers," 2013 IEEE Applied Electromagnetics Conference (AEMC), 1-2, IEEE, Bhubaneswar, India, 2013. Google Scholar
29. Kundu, A., B. Gupta, and A. I. Mallick, "SAR analysis in a typical bunch of grapes exposed to radio frequency radiation in Indian scenario," 2016 International Conference on Microelectronics, Computing and Communications (MicroCom), 1-5, IEEE, 2016. Google Scholar
30. Kundu, A., B. Gupta, and A. I. Mallick, "Specific absorption rate evaluation in a typical multilayer fruit: Coconut with twig due to electromagnetic radiation as per Indian standards," Microwave Review (Mikrotalasana Revija), Vol. 23, No. 2, 24-32, 2017. Google Scholar
31. Kundu, A., B. Gupta, and A. I. Mallick, "Dependence of electromagnetic energy distribution inside a typical multilayer fruit model on direction of arrival and polarization of incident field," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, IEEE, 2019. Google Scholar
32. Kundu, A., B. Gupta, and A. I. Mallick, "Contrast in specific absorption rate for a typical plant model due to discrepancy among global and national electromagnetic standards," Progress In Electromagnetics Research M, Vol. 99, 139-152, 2021.
doi:10.2528/PIERM20090404 Google Scholar
33. Kundu, A., B. Gupta, and A. I. Mallick, "Estimation of specific absorption rate levels in a typical fruit specimen and observations on their variations according to different electromagnetic standards," Microwave Review, Vol. 27, No. 2, 2021. Google Scholar
34. Kundu, A., B. Gupta, and A. I. Mallick, "Dependence of specific absorption rate and its distribution inside a homogeneous fruit model on frequency, angle of incidence, and wave polarization," Frequenz, Vol. 76, No. 1-2, 109-119, 2022.
doi:10.1515/freq-2021-0049 Google Scholar
35. Deschamps, G., "Impedance of an antenna in a conducting medium," IRE Trans. Antennas and Propagation, Vol. 10, No. 5, 648-650, 1962.
doi:10.1109/TAP.1962.1137923 Google Scholar
36. Liu, L., D. Xu, and Z. Jiang, "Improvement in dielectric measurement technique of open-ended coaxial line resonator method," Electronics Letters, Vol. 22, No. 7, 373-375, 1986.
doi:10.1049/el:19860254 Google Scholar
37. Xu, D., L. Liu, and Z. Jiang, "Measurement of the dielectric properties of biological substances using an improved open-ended coaxial line resonator method," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 12, 1424-1428, 1987.
doi:10.1109/TMTT.1987.1133870 Google Scholar
38. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection method for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, 1980.
doi:10.1109/TIM.1980.4314902 Google Scholar
39. Athey, T. W., M. A. Stuchly, and S. S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Transactions on Microwave Theory and Techniques, Vol. 30, No. 1, 82-86, 1982.
doi:10.1109/TMTT.1982.1131021 Google Scholar
40. CST STUDIO SUITE 2016, , , https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.
41. DoT Mobile Communication --- Radio Waves & Safety, 1-15, India, 2012.
42. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Phys., Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210 Google Scholar
43. Cleveland, Jr., R. F., D. M. Sylvar, and J. L. Ulcek, "Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields," FCC OET Bulletin, Vol. 65, Edition 97-01, Washington D.C., 1997. Google Scholar
44. SAEFL Electrosmog in the Environment, 1-56, Switzerland, 2005.
45. Ministry of Health of the Russian Federation, , SanPiN 2.1.8/2.2.4.1190-03: Arrangement and operation of land mobile radiocommunication facilities --- Hygienic requirements, 1-17, Russia, 2003.
46. The president of the council of ministers (Italy), , Establishment of exposure limits, attention values, and quality goals to protect the population against electric, magnetic, and electromagnetic field generated at frequencies between 100 kHz and 300 GHz (unofficial translation by P. Vecchia), 1-6, Italy, 2003.
47. Vecchia, P., "Radiofrequency fields: Bases for exposure limits," 2 European IRPA Congress on Radiation Protection | Radiation Protection: From Knowledge to Action, 1-19, Paris, 2006. Google Scholar
48. Foster, K. R., "Exposure limits for radiofrequency energy: Three models," Proceedings of the Eastern European Regional EMF Meeting and Workshop (Criteria for EMF Standards Harmonization), 1-6, Varna, Bulgaria, 2001. Google Scholar
49. Weiland, T., "A discretization method for the solution of Maxwell's equations for six-component fields," Electronics and Communications AEU, Vol. 31, No. 3, 116-120, 1977.
doi:10.2528/PIER00080103 Google Scholar
50. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001. Google Scholar
51. "IEC/IEEE International Standard --- Determining the peak spatial-average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz to 6 GHz --- Part 1: General requirements for using the finite-difference time-domain (FDTD) method for SAR calculations," IEC/IEEE 62704-1: 2017, 1-86, United States, 2017.
doi:10.1088/0031-8949/91/3/035501 Google Scholar
52. Bhattacharya, K., "On the dependence of charge density on surface curvature of an isolated conductor," Physica Scripta, Vol. 91, No. 3, 035501, 2016. Google Scholar
53. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, 2nd Ed., PHI Learning, 2009.
54. Deshpande, M. D., C. R. Cockrell, F. B. Beck, E. Vedeler, and M. B. Koch, "Analysis of electromagnetic scattering from irregularly shaped, thin, metallic at plates," NTRS --- NASA Technical Reports Server, NASA Technical Paper 3361, 1993.
doi:10.1080/10942912.2016.1261154 Google Scholar
55. Kataria, T. K., J. L. Olvera-Cervantes, A. Corona-Chavez, R. Rojas-Laguna, and M. E. Sosa-Morales, "Dielectric properties of guava, mamey sapote, prickly pears, and Nopal in the microwave range," International Journal of Food Properties, Vol. 20, No. 12, 2944-2953, 2017.
doi:10.4161/psb.1.2.2434 Google Scholar
56. Vian, D. R., S. Girard, P. Bonnet, F. Paladian, E. Davies, and G. Ledoigt, "Microwave irradiation affects gene expression in plants," Plant Signaling & Behavior, Vol. 1, No. 2, 67-69, 2006.
doi:10.1111/j.1399-3054.2006.00740.x Google Scholar
57. Roux, D., A. Vian, S. Girard, P. Bonnet, F. Paladian, E. Davies, and G. Ledoigt, "Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants," Physiologia Plantarum, Vol. 128, No. 2, 283-288, 2006.
doi:10.4161/psb.3.6.5385 Google Scholar
58. Roux, D., C. Faure, P. Bonnet, S. Girard, G. Ledoigt, E. Davies, M. Gendraud, F. Paladian, and A. Vian, "A possible role for extra-cellular ATP in plant responses to high frequency, low amplitude electromagnetic field," Plant Signaling & Behavior, Vol. 3, No. 6, 383-385, 2008.
doi:10.4161/psb.2.6.4657 Google Scholar
59. Vian, A., C. Faure, S. Girard, E. Davies, F. Halle, P. Bonnet, G. Ledoigt, and F. Paladian, "Plants respond to GSM like radiations," Plant Signaling & Behavior, Vol. 2, No. 6, 522-524, 2007. Google Scholar
60. Vian, A., E. Davies, M. Gendraud, and P. Bonnet, "Plant responses to high frequency electromagnetic fields," BioMed Research International, Article ID 1830262, 2016.
doi:10.1002/bem.22319 Google Scholar
61. Kundu, A., S. Vangaru, S. Bhattacharyya, A. I. Mallick, and B. Gupta, "Electromagnetic irradiation evokes physiological and molecular alterations in rice," Bioelectromagnetics, Vol. 42, No. 2, 173-185, 2021.
doi:10.1002/bem.22374 Google Scholar
62. Kundu, A., S. Vangaru, S. Bhowmick, S. Bhattacharyya, A. I. Mallick, and B. Gupta, "One-time electromagnetic irradiation modifies stress-sensitive gene expressions in rice plant," Bioelectromagnetics, Vol. 42, No. 8, 649-658, 2021. Google Scholar