Vol. 136
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-23
Study on Sensorless Control of Six Phase Fault-Tolerant Permanent Magnet Rim Driven Motor with Improved Second-Order SOGI HF Voltage Injection
By
Progress In Electromagnetics Research C, Vol. 136, 245-259, 2023
Abstract
From the perspective of motor control and manufacturing process, the application of fault-tolerant permanent magnet rim driven motor (FTPM-RDM) in shaftless rim driven thruster (RDT) can avoid the complicated shafting structure in traditional propulsion system effectively, and realize the sensorless control while reducing volume. Referring to the fault-tolerant structure features, this paper introduces an improved sensorless control algorithm based on two-stage second-order generalized integral (SOGI) pulsating high-frequency (HF) voltage injection which is applied to the FTPM-RDM in zero and low speed. This algorithm can realize the rotor position estimation under fault and healthy condition. Based on pulsating HF injection method, HF square-wave voltages are injected in the virtual dq axis, and the initial rotor position can be extracted from the response currents of stationary reference frame (SRF). The sinusoidal voltage is injected into the virtual $dq$ axis, and use two-stage SOGI instead of the traditional filter is used to realize the current modulation without delay in low speed rotor position estimation. Combining the simulation and experiments, the proposed sensorless control strategy can estimate the rotor position accurately whether in failure or not and has good dynamic and static performance.
Citation
Yonghan Liu, Jingwei Zhu, Ping Ren, Jiang Wu, and Si Chen, "Study on Sensorless Control of Six Phase Fault-Tolerant Permanent Magnet Rim Driven Motor with Improved Second-Order SOGI HF Voltage Injection," Progress In Electromagnetics Research C, Vol. 136, 245-259, 2023.
doi:10.2528/PIERC23071703
References

1. Yang, Z., X. Yan, and W. Ouyang, "A review of electric motor and control technology for rim-driven thruster," Transactions of China Electrotechnical Society, Vol. 37, No. 12, 2949-2960, 2022.

2. Yan, X., X. Liang, W. Ouyang, Z. Liu, B. Liu, and J. Lan, "A review of progress and applications of ship shaft-less rim-driven thrusters," Ocean Engineering, Vol. 144, 142-156, 2017.
doi:10.1016/j.oceaneng.2017.08.045

3. Shen, Y., P. Hu, and S. Jin, "Design of novel shaftless pump-jet propulsor for multipurpose long- range and high-speed autonomous underwater vehicle," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.
doi:10.1109/TMAG.2016.2522822

4. Richardson, K. M., C. Pollock, and J. O. Flower, "Design of a switched reluctance sector motor for an integrated motor/propeller unit," International Conference on Electrical Machines & Drives, 271-275, Durham, UK, 1995.
doi:10.1049/cp:19950877

5. Hassannia, A. and A. Darabi, "Design and performance analysis of superconducting rim-driven synchronous motors for marine propulsion," IEEE Transactions on Applied Superconductivity, Vol. 24, No. 1, 40-46, 2016.
doi:10.1109/TASC.2013.2280346

6. Hang, J., W. Sun, Q. Hu, X. Ren, and S. Ding, "Integration of interturn fault diagnosis and fault-tolerant control for PMSM drive system," IEEE Transactions on Transportation Electrification, Vol. 8, No. 2, 2825-2835, 2022.
doi:10.1109/TTE.2021.3134821

7. Ma, R., J. Zhu, Q. Lin, and Y. Zhang, "Influence of winding distribution on fault tolerant performance in a fault-tolerant permanent magnet rim driven motor," IEEE Access, Vol. 7, 183236-183244, 2019.
doi:10.1109/ACCESS.2019.2960385

8. Qiao, T., J. Zhu, and X. Wang, "Design and optimization of a flux-modulated fault-tolerant permanent magnet rim-driven machine with combined stator to improve torque density," IEEE Transactions on Energy Conversion, Vol. 38, No. 1, 75-88, 2023.
doi:10.1109/TEC.2022.3210266

9. Teymoori, V., M. Kamper, R.-J. Wang, and R. Kennel, "Sensorless control of dual three-phase permanent magnet synchronous machines --- A review," Energies, Vol. 16, No. 3, 1326, 2023.
doi:10.3390/en16031326

10. Wang, G., M. Valla, and J. Solsona, "Position sensorless permanent magnet synchronous machine drives --- A review," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5830-5842, 2020.
doi:10.1109/TIE.2019.2955409

11. Tir, Z., T. Orlowska-Kowalska, H. Ahmed, and A. Houari, "Adaptive high gain observer based MRAS for sensorless induction motor drives," IEEE Transactions on Industrial Electronics, Vol. 71, No. 1, 271-281, 2024.
doi:10.1109/TIE.2023.3243271

12. Benevieri, A., A. Formentini, M. Marchesoni, M. Passalacqua, and L. Vaccaro, "Sensorless control with switching frequency square wave voltage injection for SPMSM with low rotor magnetic anisotropy," IEEE Transactions on Power Electronics, Vol. 38, No. 8, 10060-10072, 2023.
doi:10.1109/TPEL.2023.3270357

13. Wen, D., W. Wang, and Y. Zhang, "Sensorless control of permanent magnet synchronous motor in full speed range," Chinese Journal of Electrical Engineering, Vol. 8, No. 2, 97-107, 2022.
doi:10.23919/CJEE.2022.000018

14. Ye, S. and X. Yao, "An enhanced SMO-based permanent-magnet synchronous machine sensorless drive scheme with current measurement error compensation," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 9, No. 4, 4407-4419, 2021.
doi:10.1109/JESTPE.2020.3038859

15. Shuang, B. and Z.-Q. Zhu, "Simultaneous sensorless rotor position and torque estimation for IPMSM at standstill and low speed based on high-frequency square wave voltage injection," IEEE Transactions on Industrial Electronics, Vol. 69, No. 9, 8791-8802, 2022.
doi:10.1109/TIE.2021.3114725

16. Pacha, M. and S. Zossak, "Improved simple I-F open-loop start-up of PMSM drives without speed or position sensor," 2019 IEEE 10th International Symposium on Sensorless Control for Electrical Drives (SLED), 1-6, 2019.

17. Zhang, G., G. Wang, and D. Xu, "Saliency-based position sensorless control methods for PMSM drives --- A review," Chinese Journal of Electrical Engineering, Vol. 3, No. 2, 14-23, 2017.
doi:10.23919/CJEE.2017.8048408

18. Sun, J. J., Q. Zhu, Y. Zhou, and J. Zhao, "Open-circuit fault diagnosis of voltage source inverters for PMSM drive system using sine-wave injection method," 2021 33rd Chinese Control and Decision Conference (CCDC), 4598-4603, 2021.

19. Liu, J., Y. Zhang, H. Yang, and W. Shen, "Position sensorless control of PMSM drives based on HF sinusoidal pulsating voltage injection," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), 3849-3853, 2020.
doi:10.1109/ECCE44975.2020.9236162

20. Lu, Q., Y. Wang, L. Mo, and T. Zhang, "Pulsating high frequency voltage injection strategy for sensorless permanent magnet synchronous motor drives," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 8, 1-4, 2021.

21. Geng, Q., Z. Li, M. Zhang, Z. Zhou, H. Wang, and T. Shi, "Sensorless control method for dual permanent magnet synchronous motors driven by five-leg voltage source inverter," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 10, No. 1, 260-272, 2022.
doi:10.1109/JESTPE.2021.3096198

22. Rahman, A. A., A. Galassini, M. Degano, et al. "Open and short circuit post-fault control strategies for multi-three-phase interior permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 37, No. 1, 163-174, 2022.
doi:10.1109/TEC.2021.3090982

23. Gu, L., Q. Chen, W. Zhao, G. Liu, and Y. Xia, "Inter-phase short-circuit fault-tolerant control for five-phase permanent magnet fault-tolerant motors," Transactions of China Electrotechnical Society, Vol. 37, No. 8, 1972-1981, 2022.

24. Zhu, J., H. Bai, X. Wang, and X. Li, "Current vector control strategy in a dual-winding fault-tolerant permanent magnet motor drive," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2191-2199, 2018.
doi:10.1109/TEC.2018.2876512