Vol. 122
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-12-15
Dispersion Analysis of a Planar Rectangular Tape Helix Slow Wave Structures Supported by Dielectric Rods
By
Progress In Electromagnetics Research M, Vol. 122, 97-105, 2023
Abstract
The dispersion equation for a rectangular tape helix with four rectangular dielectric support rods has been deduced using precise boundary conditions employing field restricting functions. The dispersion equation is a much simplified conjoint expression obtained for axial and transverse directions derived by solving an infinite set of linear homogeneous simultaneous equations, represented as an infinite order matrix whose determinant is zero. Dispersion characteristics plotted from the simplified dispersion equation consist of the dominant and additional higher-order modes similar to an open rectangular slow wave structure (SWS), but with the existence of β0a(k0a) roots everywhere without the limitations of the forbidden region boundary. The phase velocity curves obtained for the corresponding mode of the dispersion characteristics exhibit comparable behavior to the free-space rectangular helix SWS, especially in the third ``allowed'' region, which offers a wider beam-wave interaction region with phase speed equivalent to the speed of light at higher operating frequencies. The numerically computed dispersion curves and their corresponding phase velocities were plotted. Similar dimensional variations of the structure with discrete support rods were simulated using three-dimensional simulation software. The dispersion characteristics obtained from the simplified dispersion equation along with the dimensional variation of the dielectric-loaded rectangular tape helix SWS determine the capability and limitations of such minuscule traveling wave tubes(TWTs) as planar TWTs suitable for fabrication using micro-machining techniques.
Citation
Naveen Babu, and Nameesha Chauhan, "Dispersion Analysis of a Planar Rectangular Tape Helix Slow Wave Structures Supported by Dielectric Rods," Progress In Electromagnetics Research M, Vol. 122, 97-105, 2023.
doi:10.2528/PIERM23102604
References

1. Kalyanasundaram, N. and G. Naveen Babu, "Dispersion of electromagnetic waves guided by an open tape helix I," Progress In Electromagnetics Research B, Vol. 16, 311-331, 2009.

2. Joshi, S. N. and B. N. Basu, "Equivalent circuit analysis of a practical slow-wave structure for TWT's," IETE Journal of Research, Vol. 25, No. 10, 423-425, 1979.

3. Kalyanasundaram, Natarajan and Gnanamoorthi Naveen Babu, "Propagation of electromagnetic waves guided by the anisotropically conducting model of a tape helix supported by dielectric rods," Progress In Electromagnetics Research B, Vol. 51, 81-99, 2013.

4. Ghosh, S., P. K. Jain, and B. N. Basu, "Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures," IEEE Transactions on Electron Devices, Vol. 44, No. 7, 1158-1168, Jul. 1997.
doi:10.1109/16.595945

5. Jain, P. K. and B. N. Basu, "The inhomogeneous dielectric loading effects of practical helix supports on the interaction impedance of the slow-wave structure of a TWT," IEEE Transactions on Electron Devices, Vol. 39, No. 3, 727-733, Mar. 1992.
doi:10.1109/16.123501

6. Babu, Gnanamoorthi Naveen and Richards Joe Stanislaus, "Propagation of electromagnetic waves guided by perfectly conducting model of a tape helix supported by dielectric rods," IET Microwaves, Antennas & Propagation, Vol. 10, No. 6, 676-685, Apr. 2016.
doi:10.1049/iet-map.2015.0516

7. Kalyanasundaram, N., G. Naveen Babu, and Rahul Tulsian, "On the distribution of current on an open tape helix," Progress In Electromagnetics Research M, Vol. 12, 81-93, 2010.

8. Kalyanasundaram, N. and G. Naveen Babu, "Perfectly conducting tape-helix model for guided electromagnetic wave propagation," IET Microwaves, Antennas & Propagation, Vol. 6, No. 8, 899-907, Jun. 2012.
doi:10.1049/iet-map.2011.0446

9. Babu, G. Naveen, "Comparative study of guided electromagnetic wave propagation for two models of an open tape helix," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 4, 3450-3459, Apr. 2023.
doi:10.1109/TAP.2023.3243948

10. Stanislaus, Richards Joe and Naveen Babu Gnanamoorthi, "Large-signal field analysis of a linear beam travelling wave tube amplifier for the anisotropically conducting tape helix slow-wave structure supported by dielectric rods," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 4, 439-470, 2018.
doi:10.1080/09205071.2017.1394916

11. Arora, R. K., "Surface waves on a pair of parallel undirectionally conducting screens," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 6, 795-797, 1966.
doi:10.1109/TAP.1966.1138790

12. Chadha, D., S. Aditya, and R. Arora, "Field-theory of planar helix traveling-wave tube," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, No. 1, 73-76, 1983.
doi:10.1109/TMTT.1983.1131432

13. Aditya, S. and R. Arora, "Guided-waves on a planar helix," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 10, 860-863, 1979.
doi:10.1109/TMTT.1979.1129749

14. Kumar, Ajith M. M. and Sheel Aditya, "Simplified tape-helix analysis of the planar helix slow wave structure with straight-edge connections," IEEE Transactions on Electron Devices, Vol. 65, No. 6, 2280-2286, Jun. 2018.
doi:10.1109/TED.2018.2797928

15. Fu, Chengfang, Yanyu Wei, Wenxiang Wang, and Yubin Gong, "Dispersion characteristics of a rectangular helix slow-wave structure," IEEE Transactions on Electron Devices, Vol. 55, No. 12, 3582-3589, Dec. 2008.
doi:10.1109/TED.2008.2006539

16. Fu, Cheng-Fang, Yan-Yu Wei, Wen-Xiang Wang, and Yu-Bin Gong, "Radio-frequency characteristics of a printed rectangular helix slow-wave structure," Chinese Physics Letters, Vol. 25, No. 9, 3478-3481, Sep. 2008.

17. Wei, Wanghe, Yanyu Wei, Wenxiang Wang, Minghao Zhang, Huarong Gong, and Yubin Gong, "Dispersion equations of a rectangular tape helix slow-wave structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1445-1456, May 2015.
doi:10.1109/TMTT.2015.2411600

18. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Transactions on Antennas and Propagation, Vol. 20, No. 4, 442-446, 1972.

19. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell System Technical Journal, Vol. 48, No. 7, 2071-2102, 1969.
doi:10.1002/j.1538-7305.1969.tb01166.x

20. Kumar, Ajith M. M., Sheel Aditya, and Ciersiang Chua, "Interaction impedance for space harmonics of circular helix using simulations," IEEE Transactions on Electron Devices, Vol. 64, No. 4, 1868-1872, Apr. 2017.
doi:10.1109/TED.2017.2669332