Department of Radiology, Taizhou Hospital of Zhejiang Province
Zhejiang University
China
Homepage1. Xu, Can T., Qiuqiang Zhan, Haichun Liu, Gabriel Somesfalean, Jun Qian, Sailing He, and Stefan Andersson-Engels, "Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges," Laser & Photonics Reviews, Vol. 7, No. 5, 663-697, Sep. 2013.
doi:10.1002/lpor.201200052 Google Scholar
2. Wang, D., J. Qian, F. Cai, S. He, S. Han, and Y. Mu, "`Green'-synthesized near-infrared Pbs quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging," Nanotechnology, Vol. 23, No. 24, Jun. 22 2012.
doi:10.1088/0957-4484/23/24/245701 Google Scholar
3. Zhan, Qiuqiang, Hao Cheng, Jun Qian, and Sailing He, "Multi-photon evanescent wave (MPEW) excited lanthanide-doped upconverting nanoparticles (UCNPs) for fast single particles tracking and live cell membrane imaging," Asia Communications and Photonics Conference, AS3E-3, 2012.
4. Liu, Jing, Ruitao Wu, Nana Li, Xin Zhang, Qiuqiang Zhan, and Sailing He, "Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF:Er/NaYF) nanoprobe excited by 1480-nm CW laser of only 1.5-mW," Biomedical Optics Express, Vol. 6, No. 5, 1857-1866, 2015. Google Scholar
5. Qian, Jun, Li Jiang, Fuhong Cai, Dan Wang, and Sailing He, "Fluorescence-surface enhanced raman scattering co-functionalized gold nanorods as near-infrared probes for purely optical in vivo imaging," Biomaterials, Vol. 32, No. 6, 1601-1610, Feb. 2011.
doi:10.1016/j.biomaterials.2010.10.058 Google Scholar
6. Qian, Jun, Dan Wang, Fu-Hong Cai, Wang Xi, Li Peng, Zhen-Feng Zhu, Hao He, Ming-Lie Hu, and Sailing He, "Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging," Angewandte Chemie-international Edition, Vol. 51, No. 42, 10570-10575, 2012.
doi:10.1002/anie.201206107 Google Scholar
7. Wang, Shaowei, Xinyuan Zhao, Shaochuan Wang, Jun Qian, and Sailing He, "Biologically inspired polydopamine capped gold nanorods for drug delivery and light-mediated cancer therapy," Acs Applied Materials & Interfaces, Vol. 8, No. 37, 24368-24384, Sep. 21 2016.
doi:10.1021/acsami.6b05907 Google Scholar
8. Zhan, Qiuqiang, Baoju Wang, Xuanyuan Wen, and Sailing He, "Controlling the excitation of upconverting luminescence for biomedical theranostics: neodymium sensitizing," Optical Materials Express, Vol. 6, No. 4, 1011-1023, Apr. 1 2016.
doi:10.1364/OME.6.001011 Google Scholar
9. Zhan, Qiuqiang, Jun Qian, Huijuan Liang, Gabriel Somesfalean, and Stefan Andersson-Engels, "Using 915 nm laser excited Tm/Er/Ho-doped NaYbF upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation," Acs Nano, Vol. 5, No. 5, 3744-3757, 2011. Google Scholar
10. Zhan, Qiuqiang, Sailing He, Jun Qian, Hao Cheng, and Fuhong Cai, "Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield," Theranostics, Vol. 3, No. 5, 306-316, 2013.
doi:10.7150/thno.6007 Google Scholar
11. Wang, Shaowei, Xinyuan Zhao, Jun Qian, and Sailing He, "Polyelectrolyte coated BaTiO nanoparticles for second harmonic generation imaging-guided photodynamic therapy with improved stability and enhanced cellular uptake," RSC Advances, Vol. 6, No. 46, 40615-40625, 2016. Google Scholar
12. Sun, Xianhe, Zhang Ji, and Sailing He, "SHG-enhanced NIR-excited in vitro photodynamic therapy using composite nanoparticles of barium titanate and rose bengal," RSC Advances, Vol. 9, No. 14, 8056-8064, 2019.
doi:10.1039/c9ra00432g Google Scholar
13. Li, Nana, Xuanyuan Wen, Jing Liu, Baoju Wang, Qiuqiang Zhan, and Sailing He, "Yb-enhanced UCNP@SiO nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy," Optical Materials Express, Vol. 6, No. 4, 1161-1171, 2016. Google Scholar
14. Qian, Jun, Dan Wang, Fuhong Cai, Qiuqiang Zhan, Yalun Wang, and Sailing He, "Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and functional imaging," Biomaterials, Vol. 33, No. 19, 4851-4860, Jun. 2012.
doi:10.1016/j.biomaterials.2012.02.053 Google Scholar
15. Sun, Xianhe, Abudureheman Zebibula, Xiaobiao Dong, Gonghui Li, Guanxin Zhang, Deqing Zhang, Jun Qian, and Sailing He, "Targeted and imaging-guided n vivo photodynamic therapy for tumors using dual-function, aggregation-induced emission nanoparticles," Nano Research, Vol. 11, No. 5, 2756-2770, May 2018.
doi:10.1007/s12274-017-1906-7 Google Scholar
16. Wang, Baoju, Qiuqiang Zhan, Yuxiang Zhao, Ruitao Wu, Jing Liu, and Sailing He, "Visible-to-visible four-photon ultrahigh resolution microscopic imaging with 730-nm diode laser excited nanocrystals," Optics Express, Vol. 24, No. 2, A302-A311, Jan. 25 2016.
doi:10.1364/OE.24.00A302 Google Scholar
17. Zhan, Qiuqiang, Haichun Liu, Baoju Wang, Qiusheng Wu, Rui Pu, Chao Zhou, Bingru Huang, Xingyun Peng, Hans Gren, and Sailing He, "Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles," Nature Communications, Vol. 8, Oct. 20 2017.
doi:10.1038/s41467-017-01141-y Google Scholar
18. Wu, Ruitao, Qiuqiang Zhan, Haichun Liu, Xuanyuan Wen, Baoju Wang, and Sailing He, "Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy," Optics Express, Vol. 23, No. 25, 32401-32412, Dec. 14 2015.
doi:10.1364/OE.23.032401 Google Scholar
19. Zhao, Yuxiang, Qiuqiang Zhan, Jing Liu, and Sailing He, "Optically investigating Nd-Yb cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging," Biomedical Optics Express, Vol. 6, No. 3, 838-848, 2015. Google Scholar
20. Zhang, Ge, Hao Dong, Di Wang, Lingdong Sun, and Chunhua Yan, "Investigations on multi-photon emissions of Nd-sensitized core/shell nanoparticles," Journal of Rare Earths, 2017. Google Scholar
21. Bi, Xueqing, Guanghui He, Weihua Di, and Weiping Qin, "Enhanced near-infrared upconversion luminescence of NaYFYb, Tm/CdSe nanoheterostructures," Materials Letters, Vol. 173, 187-190, Jun. 15 2016.
doi:10.1016/j.matlet.2016.02.158 Google Scholar
22. Shao, Baiqi, Yang Feng, Yan Song, Mengmeng Jiao, Wei Lü, and Hongpeng You, "Topotactic transformation route to monodisperse β-NaYF:Ln microcrystals with luminescence properties," Inorganic Chemistry, Vol. 55, No. 4, 1912-1919, 2016. Google Scholar
23. Li, Junhao, Guangwei Hu, Lina Shi, Nan He, Daqian Li, Qiuyu Shang, Qing Zhang, Huange Fu, Linlin Zhou, Wei Xiong, Jianguo Guan, Jian Wang, Sailing He, and Lin Chen, "Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials," Nature Communications, Vol. 12, No. 1, Nov. 5 2021.
doi:10.1038/s41467-021-26818-3 Google Scholar
24. Xia, Juan, Jianwei Tang, Fanglin Bao, Yongcheng Sun, Maodong Fang, Guanjun Cao, Julian Evans, and Sailing He, "Turning a hot spot into a cold spot: polarization-controlled fano-shaped local-field responses probed by a quantum dot," Light-science & Applications, Vol. 9, No. 1, Sep. 21 2020.
doi:10.1038/s41377-020-00398-1 Google Scholar
25. Shao, Bo, Zhengwen Yang, Jun Li, Jianzhi Yang, Yida Wang, Jianbei Qiu, and Zhiguo Song, "Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption," Optical Materials Express, Vol. 7, No. 4, 1188-1197, Apr. 1 2017.
doi:10.1364/OME.7.001188 Google Scholar
26. Gong, Chensheng, Wen Liu, Nan He, Hongguang Dong, Yi Jin, and Sailing He, "Upconversion enhancement by a dual-resonance all-dielectric metasurface," Nanoscale, Vol. 11, No. 4, 1856-1862, Jan. 28 2019.
doi:10.1039/c8nr08653b Google Scholar
27. Hu, Zhipeng, Nan He, Yuwei Sun, Yi Jin, and Sailing He, "Wideband high-reflection chiral dielectric metasurface," Progress In Electromagnetics Research, Vol. 172, 51-60, 2021. Google Scholar
28. Zhan, Qiuqiang, Xin Zhang, Yuxiang Zhao, Jing Liu, and Sailing He, "Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod," Laser & Photonics Reviews, Vol. 9, No. 5, 479-487, Sep. 2015.
doi:10.1002/lpor.201500013 Google Scholar
29. Wu, Nanxuan, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, and Haoliang Qian, "Tunable high-Q plasmonic metasurface with multiple surface lattice resonances," Progress In Electromagnetics Research, Vol. 172, 23-32, 2021. Google Scholar
30. Hu, Siqi, Shengnan Wu, Chenxi Li, Runze Chen, Erik Forsberg, and Sailing He, "SNR-enhanced temperature-insensitive microfiber humidity sensor based on upconversion nanoparticles and cellulose liquid crystal coating," Sensors and Actuators B-chemical, Vol. 305, Feb. 15 2020.
doi:10.1016/j.snb.2019.127517 Google Scholar
31. Zhang, Haoran, Jiacheng Sun, Jie Yang, Israel De Leon, Remo Proietti Zaccaria, Haoliang Qian, Hongsheng Chen, Gaofeng Wang, and AT Wang, "Biosensing performance of a plasmonic-grating-based nanolaser," Prog. Electromagn. Res, Vol. 171, 159-169, 2021. Google Scholar
32. Liu, Wen, Runze Chen, and Sailing He, "Ultra-stable near-infrared Tm-doped upconversion nanoparticles for wide-field two-photon angiography with a low excitation intensity," Journal of Innovative Optical Health Sciences, Vol. 12, No. 3, May 2019.
doi:10.1142/S1793545819500135 Google Scholar
33. Ding, Fei, "A review of multifunctional optical gap-surface plasmon metasurfaces," Progress In Electromagnetics Research, Vol. 174, 55-73, 2022. Google Scholar
34. Xu, Can T., Qiuqiang Zhan, Haichun Liu, Gabriel Somesfalean, Jun Qian, Sailing He, and Stefan Andersson-Engels, "Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges," Laser & Photonics Reviews, Vol. 7, No. 5, 663-697, Sep. 2013.
doi:10.1002/lpor.201200052 Google Scholar
35. Cai, Fuhong and Sailing He, "Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging," Journal of Biomedical Optics, Vol. 19, No. 1, 11022, Jan. 2014.
doi:10.1117/1.JBO.19.1.011022 Google Scholar
36. Ploschner, Martin, Denitza Denkova, Simone De Camillis, Minakshi Das, Lindsay M. Parker, Xianlin Zheng, Yiqing Lu, Samuel Ojosnegros, and James A. Piper, "Simultaneous super-linear excitation-emission and emission depletion allows imaging of upconversion nanoparticles with higher sub-diffraction resolution," Optics Express, Vol. 28, No. 16, 24308-24326, Aug. 3 2020.
doi:10.1364/OE.400651 Google Scholar
37. Liu, Yujia, Yiqing Lu, Xusan Yang, Xianlin Zheng, Shihui Wen, Fan Wang, Xavier Vidal, Jiangbo Zhao, Deming Liu, Zhiguang Zhou, Chenshuo Ma, Jiajia Zhou, James A. Piper, Peng Xi, and Dayong Jin, "Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy," Nature, Vol. 543, No. 7644, 229-233, Mar. 9 2017.
doi:10.1038/nature21366 Google Scholar
38. De Camillis, Simone, Peng Ren, Yueying Cao, Martin Ploschner, Denitza Denkova, Xianlin Zheng, Yiqing Lu, and James A. Piper, "Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance," Nanoscale, Vol. 12, No. 39, 20347-20355, Oct. 21 2020.
doi:10.1039/d0nr04809g Google Scholar
39. Tian, Yuanyuan, Yue Tian, Ping Huang, Lei Wang, Qiufeng Shi, and Cai'e Cui, "Effect of Yb concentration on upconversion luminescence and temperature sensing behavior in Yb/Er co-doped YNbO nanoparticles prepared via molten salt route," Chemical Engineering Journal, Vol. 297, 26-34, Aug. 1 2016.
doi:10.1016/j.cej.2016.03.149 Google Scholar
40. Zhao, Jiangbo, Xianlin Zheng, Erik P Schartner, Paul Ionescu, Run Zhang, Tich-Lam Nguyen, Dayong Jin, and Heike Ebendorff-Heidepriem, "Glass fibers: upconversion nanocrystal-doped glass: A new paradigm for photonic materials (advanced optical materials 10/2016)," Advanced Optical Materials, Vol. 4, No. 10, 1419-1419, 2016. Google Scholar
41. Kim, Seockjune, Sang-Hyun Hwang, Su-Gyeong Im, Min-Ki Lee, Chang-Hun Lee, Sang Jun Son, and Heung-Bum Oh, "Upconversion nanoparticle-based forster resonance energy transfer for detecting DNA methylation," Sensors, Vol. 16, No. 8, Aug. 2016.
doi:10.3390/s16081259 Google Scholar
42. He, M., X. Pang, X. Liu, et al., "Innenrucktitelbild: monodisperse dual‐functional upconversion nanoparticles enabled near‐infrared organolead halide perovskite solar cells (Angew. Chem. 13/2016)," Angewandte Chemie, Vol. 55, No. 13, Mar. 2016. Google Scholar
43. Shangguan, Mingjia, Haiyun Xia, Chong Wang, Jiawei Qiu, Guoliang Shentu, Qiang Zhang, Xiankang Dou, and Jian-Wei Pan, "All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer," Optics Express, Vol. 24, No. 17, 19322-19336, Aug. 22 2016.
doi:10.1364/OE.24.019322 Google Scholar
44. Liu, Yu, Ning Kang, Jing Lv, Zijian Zhou, Qingliang Zhao, Lingceng Ma, Zhong Chen, Lei Ren, and Liming Nie, "Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high-efficiency upconversion nanocomposites," Advanced Materials, Vol. 28, No. 30, 6411-6419, Aug. 10 2016.
doi:10.1002/adma.201506460 Google Scholar
45. Gu, Zhanjun, Liang Yan, Gan Tian, Shoujian Li, Zhifang Chai, and Yuliang Zhao, "Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications," Advanced Materials, Vol. 25, No. 28, 3758-3779, 2013. Google Scholar
46. Park, Wounjhang, Dawei Lu, and Sungmo Ahn, "Plasmon enhancement of luminescence upconversion," Chemical Society Reviews, Vol. 44, No. 10, 2940-2962, 2015.
doi:10.1039/c5cs00050e Google Scholar
47. Shao, Baiqi, Qi Zhao, Yongchao Jia, Wenzhen Lv, Mengmeng Jiao, and , "A novel synthetic route towards monodisperse β-NaYF: Ln micro/nanocrystals from layered rare-earth hydroxides at ultra low temperature," Chem. Commun., Vol. 50, No. 84, 12706-12709, Aug. 2014. Google Scholar
48. Zhou, Bo, Bingyang Shi, Dayong Jin, and Xiaogang Liu, "Controlling upconversion nanocrystals for emerging applications," Nature Nanotechnology, Vol. 10, No. 11, 924-936, Nov. 2015.
doi:10.1038/NNANO.2015.251 Google Scholar
49. Thoma, R. E., G. M. Hebert, H. Insley, and C. F. Weaver, "Phase equilibria in the system sodium fluoride-yttrium fluoride," Inorganic Chemistry, Vol. 2, No. 5, 1005-1012, 1963. Google Scholar
50. Du, Peng, Jun Tang, Weiping Li, and Laihui Luo, "Exploiting the diverse photoluminescence behaviors of NaLuF4:xEu nanoparticles and g-C3N4 to realize versatile applications in white light-emitting diode and optical thermometer," Chemical Engineering Journal, Vol. 406, Feb. 15 2021.
doi:10.1016/j.cej.2020.127165 Google Scholar
51. Baride, Aravind, P. Stanley May, and Mary T. Berry, "Cross-relaxation from Er (H, S) and Er ( H) in β-NaYF:Yb, Er and implications for modeling upconversion dynamics," The Journal of Physical Chemistry C, Vol. 124, No. 3, 2193-2201, 2019. Google Scholar
52. Wang, Hai-Qiao, Miroslaw Batentschuk, Andres Osvet, Luigi Pinna, and Christoph J. Brabec, "Rare-earth ion doped up-conversion materials for photovoltaic applications," Advanced Materials, Vol. 23, No. 22-23, 2675-2680, Jun. 17 2011.
doi:10.1002/adma.201100511 Google Scholar
53. Chen, Zhigang, Huili Chen, He Hu, Mengxiao Yu, Fuyou Li, Qiang Zhang, Zhiguo Zhou, Tao Yi, and Chunhui Huang, "Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels," Journal of The American Chemical Society, Vol. 130, No. 10, 3023-3029, Mar. 12 2008.
doi:10.1021/ja076151k Google Scholar
54. Eliseeva, Svetlana V. and Jean-Claude G. Buenzli, "Lanthanide luminescence for functional materials and bio-sciences," Chemical Society Reviews, Vol. 39, No. 1, 189-227, 2010.
doi:10.1039/b905604c Google Scholar
55. Zhang, Hailu, Zhengwen Yang, Yuehui Wang, Yingjin Ma, Jianbei Qiu, and Zhiguo Song, "Near infrared light-induced photocurrent in NaYF:Yb, Er/WO composite film," Journal of The American Ceramic Society, Vol. 103, No. 3, 1677-1684, 2020. Google Scholar
56. Zeng, J.-H., Ji Su, Z.-H. Li, R.-X. Yan, and Y.-D. Li, "Synthesis and upconversion luminescence of hexagonal-phase NaYF:Yb, Er phosphors of controlled size and morphology," Advanced Materials, Vol. 17, No. 17, 2119-2123, 2005. Google Scholar
57. Ding, Mingye, Shilong Yin, Daqin Chen, Jiasong Zhong, Yaru Ni, Chunhua Lu, Zhongzi Xu, and Zhenguo Ji, "Hexagonal NaYF:Yb/Er nano/micro-structures: controlled hydrothermal synthesis and morphology-dependent upconversion luminescence," Applied Surface Science, Vol. 333, 23-33, Apr. 1 2015.
doi:10.1016/j.apsusc.2015.01.240 Google Scholar
58. Ding, Mingye, Shilong Yin, Yaru Ni, Chunhua Lu, Daqin Chen, Jiasong Zhong, Zhenguo Ji, and Zhongzi Xu, "Controlled synthesis of β-NaYF:Yb/Er microstructures with morphology- and size-dependent upconversion luminescence," Ceramics International, Vol. 41, No. 6, 7411-7420, Jul. 2015.
doi:10.1016/j.ceramint.2015.02.054 Google Scholar
59. Dong, Cunhai, Andreas Korinek, Barbara Blasiak, Boguslaw Tomanek, and Frank CJM van Veggel, "Cation exchange: a facile method to make NaYF:Yb, Tm-NaGdF core-shell nanoparticles with a thin, tunable, and uniform shell," Chemistry of Materials, Vol. 24, No. 7, 1297-1305, 2012. Google Scholar
60. Peng, Juanjuan, Yun Sun, Lingzhi Zhao, Yongquan Wu, Wei Feng, Yanhong Gao, and Fuyou Li, "Polyphosphoric acid capping radioactive/upconverting NaYF:Yb,Tm,153Sm nanoparticles for blood pool imaging in vivo ," Biomaterials, Vol. 34, No. 37, 9535-9544, Dec. 2013.
doi:10.1016/j.biomaterials.2013.07.098 Google Scholar
61. Tu, Datao, Yongsheng Liu, Haomiao Zhu, and Xueyuan Chen, "Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals," Chemistry --- A European Journal, Vol. 19, No. 18, 5516-5527, Apr. 2013.
doi:10.1002/chem.201204640 Google Scholar
62. Wang, Ye-Fu, Gao-Yuan Liu, Ling-Dong Sun, Jia-Wen Xiao, Jia-Cai Zhou, and Chun-Hua Yan, "Nd-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect," Acs Nano, Vol. 7, No. 8, 7200-7206, Aug. 2013.
doi:10.1021/nn402601d Google Scholar
63. Xi, Junhua, Mingye Ding, Jianbin Dai, Yajing Pan, Daqin Chen, and Zhenguo Ji, "Comparison of upconversion luminescent properties and temperature sensing behaviors of β-NaYF:Yb/Er nano/microcrystals prepared by various synthetic methods," Journal of Materials Science: Materials in Electronics, Vol. 27, No. 8, 8254-8270, Aug. 2016.
doi:10.1007/s10854-016-4832-7 Google Scholar
64. Ring, E. F. J., "The historical development of temperature measurement in medicine," Infrared Physics & Technology, Vol. 49, No. 3, 297-301, Jan. 2007.
doi:10.1016/j.infrared.2006.06.029 Google Scholar
65. Weaver, John B., "Bioimaging hot nanoparticles light up cancer," Nature Nanotechnology, Vol. 5, No. 9, 630-631, Sep. 2010.
doi:10.1038/nnano.2010.181 Google Scholar
66. Wu, Xun, Shengnan Wu, Xiaolu Chen, Huaguan Lin, Erik Forsberg, and Sailing He, "An ultra-compact and reproducible fiber tip michelson interferometer for high-temperature sensing," Progress In Electromagnetics Research, Vol. 172, 89-99, 2021. Google Scholar
67. Wang, Xiangfu, Qing Liu, Yanyan Bu, Chun-Sheng Liu, Tao Liu, and Xiaohong Yan, "Optical temperature sensing of rare-earth ion doped phosphors," RSC Advances, Vol. 5, No. 105, 86219-86236, 2015.
doi:10.1039/c5ra16986k Google Scholar
68. Allison, S. W. and G. T. Gillies, "Remote thermometry with thermographic phosphors: instrumentation and applications," Review of Scientific Instruments, Vol. 68, No. 7, 2615-2650, Jul. 1997.
doi:10.1063/1.1148174 Google Scholar
69. Kamma, Indumathi, Praveena Kommidi, and B. Rami Reddy, "Design of a high temperature sensing system using luminescence lifetime measurement," Review of Scientific Instruments, Vol. 79, No. 9, Sep. 2008.
doi:10.1063/1.2981704 Google Scholar
70. Feng, Zhigang, Shuo Yang, Haiping Xia, Cheng Wang, Dongsheng Jiang, Jian Zhang, Xuemei Gu, Yuepin Zhang, Baojiu Chen, and Haochuan Jiang, "Energy transfer and 2.0 μm emission in Tm/Ho co-doped α-NaYF single crystals," Materials Research Bulletin, Vol. 76, 279-283, 2016. Google Scholar
71. Alden, Marcus, Alaa Omrane, Mattias Richter, and Gustaf Sarner, "Thermographic phosphors for thermometry: A survey of combustion applications," Progress in Energy and Combustion Science, Vol. 37, No. 4, 422-461, Aug. 2011.
doi:10.1016/j.pecs.2010.07.001 Google Scholar
72. Fischer, Lorenz H., Gregory S. Harms, and Otto S. Wolfbeis, "Upconverting nanoparticles for nanoscale thermometry," Angewandte Chemie-international Edition, Vol. 50, No. 20, 4546-4551, 2011.
doi:10.1002/anie.201006835 Google Scholar
73. Lee, Jeong Kyu and Jae Chan Kim, "Progenitor cells in healing after pterygium excision," Yonsei Medical Journal, Vol. 48, No. 1, 48-54, Feb. 28 2007.
doi:10.3349/ymj.2007.48.1.48 Google Scholar
74. Jaque, Daniel and Fiorenzo Vetrone, "Luminescence nanothermometry," Nanoscale, Vol. 4, No. 15, 4301-4326, 2012.
doi:10.1039/c2nr30764b Google Scholar
75. Kucsko, G., P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, "Nanometre-scale thermometry in a living cell," Nature, Vol. 500, No. 7460, 54-58, Aug. 1 2013.
doi:10.1038/nature12373 Google Scholar
76. Kiyonaka, Shigeki, Taketoshi Kajimoto, Reiko Sakaguchi, Daisuke Shinmi, Mariko Omatsu-Kanbe, Hiroshi Matsuura, Hiromi Imamura, Takenao Yoshizaki, Itaru Hamachi, Takashi Morii, and Yasuo Mori, "Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells," Nature Methods, Vol. 10, No. 12, 1232-1238, Dec. 2013.
doi:10.1038/NMETH.2690 Google Scholar
77. Hattori, Kazuki, Isao Naguro, Kohki Okabe, Takashi Funatsu, Shotaro Furutani, Kohsuke Takeda, and Hidenori Ichijo, "Ask1 signalling regulates brown and beige adipocyte function," Nature Communications, Vol. 7, 11158, Apr. 2016.
doi:10.1038/ncomms11158 Google Scholar
78. Okabe, Kohki, Noriko Inada, Chie Gota, Yoshie Harada, Takashi Funatsu, and Seiichi Uchiyama, "Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy," Nature Communications, Vol. 3, 705, Feb. 2012.
doi:10.1038/ncomms1714 Google Scholar
79. Xu, Ming, Xianmei Zou, Qianqian Su, Wei Yuan, Cong Cao, Qiuhong Wang, Xingjun Zhu, Wei Feng, and Fuyou Li, "Ratiometric nanothermometer in vivo based on triplet sensitized upconversion," Nature Communications, Vol. 9, 2698, Jul. 2018.
doi:10.1038/s41467-018-05160-1 Google Scholar
80. Zhu, Xingjun, Wei Feng, Jian Chang, Yan-Wen Tan, Jiachang Li, Min Chen, Yun Sun, and Fuyou Li, "Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature," Nature Communications, Vol. 7, No. 10437, Feb. 2016.
doi:10.1038/ncomms10437 Google Scholar
81. Zhu, Xingjun, Jiachang Li, Xiaochen Qiu, Yi Liu, Wei Feng, and Fuyou Li, "Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature," Nature Communications, Vol. 9, 2176, Jun. 2018.
doi:10.1038/s41467-018-04571-4 Google Scholar
82. Xu, Zhanpeng, Yiming Jiang, Jiali Ji, Erik Forsberg, Yuanpeng Li, and Sailing He, "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," Optics Express, Vol. 28, No. 21, 30686-30700, 2020. Google Scholar
83. Gong, Dawei, Tengfei Ma, Julian Evans, and Sailing He, "Deep neural networks for image super-resolution in optical microscopy by using modified hybrid task cascade U-net," Progress in Electromagnetics Research-pier, Vol. 171, 185-199, 2021. Google Scholar
84. Lei, Ruoshan, Xin Liu, Feifei Huang, Degang Deng, Shilong Zhao, Hui Xu, and Shiqing Xu, "Optical thermometry based on anomalous temperature-dependent 1.53 μm infrared luminescence of er in BaMoO: Er/Yb phosphor," Optical Materials, Vol. 86, 278-285, Dec. 2018.
doi:10.1016/j.optmat.2018.10.024 Google Scholar
85. Li, Li, Xiaohua Tang, Zhaojie Wu, Yifei Zheng, Sha Jiang, Xiao Tang, Guotao Xiang, and Xianju Zhou, "Simultaneously tuning emission color and realizing optical thermometry via efficient Tb→Eu energy transfer in whitlockite-type phosphate multifunctional phosphors," Journal of Alloys and Compounds, Vol. 780, 266-275, Apr. 5 2019.
doi:10.1016/j.jallcom.2018.11.378 Google Scholar
86. Yao, Qi, Pan Hu, Peng Sun, Min Liu, Rui Dong, Kefu Chao, Yongfu Liu, Jun Jiang, and Haochuan Jiang, "YAG: Ce transparent ceramic phosphors brighten the next-generation laser-driven lighting," Advanced Materials, Vol. 32, No. 19, May 2020. Google Scholar
87. Yu, Zejie and Xiankai Sun, "Acousto-optic modulation of photonic bound state in the continuum," Light Science & Applications, Vol. 9, No. 1, Jan. 1 2020.
doi:10.1038/s41377-019-0231-1 Google Scholar
88. Shao, Qiyue, Gongtuo Zhang, Lilai Ouyang, Yanqing Hu, Yan Dong, and Jianqing Jiang, "Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature," Nanoscale, Vol. 9, No. 33, 12132-12141, Sep. 7 2017.
doi:10.1039/c7nr03682e Google Scholar
89. Rodriguez-Sevilla, Paloma, Tianli Lee, Liangliang Liang, Patricia Haro-Gonzalez, Gines Lifante, Xiaogang Liu, and Daniel Jaque, "Light-activated upconverting spinners," Advanced Optical Materials, Vol. 6, No. 12, Jun. 19 2018.
doi:10.1002/adom.201800161 Google Scholar
90. Wang, Nan and Sailing He, "A simple graphic method for analyzing the polarization state of an optical system with a fixed polarizer and a rotating elliptical retarder," Progress In Electromagnetics Research, Vol. 174, 107-114, 2022. Google Scholar
91. Wu, Yaw-Dong, "High efficiency multi-functional all-optical logic gates based on MIM plasmonic waveguide structure with the Kerr-type nonlinear nano-ring resonators," Progress In Electromagnetics Research, Vol. 170, 79-95, 2021.
doi:10.2528/PIER20082001 Google Scholar
92. Kang, Zhe, Chao Mei, Luqi Zhang, Zhichao Zhang, Julian Evans, Yunjun Cheng, Kun Zhu, Xianting Zhang, Dongmei Huang, and Yuhua Li, "Advanced progress on X nonlinearity in chip-scale photonic platforms," Progress In Electromagnetics Research, Vol. 170, 17-62, 2021. Google Scholar
93. Pickel, Andrea D., Ayelet Teitelboim, Emory M. Chan, Nicholas J. Borys, P. James Schuck, and Chris Dames, "Apparent self-heating of individual upconverting nanoparticle thermometers," Nature Communications, Vol. 9, Nov. 21 2018.
doi:10.1038/s41467-018-07361-0 Google Scholar
94. Yao, Da Yue, Pei Hang He, Hao Chi Zhang, Jia Wen Zhu, Mingzhe Hu, and Tie Jun Cui, "Miniaturized photonic and microwave integrated circuits based on surface plasmon polaritons," Progress In Electromagnetics Research, Vol. 175, 105-125, 2022. Google Scholar
95. Wei, Maoliang, Hui Ma, Chunlei Sun, Chuyu Zhong, Yuting Ye, Peng Zhang, Ruonan Liu, Junying Li, Lan Li, Bo Tang, and Hongtao Lin, "Tdfa-band silicon optical variable attenuator," Progress In Electromagnetics Research, Vol. 174, 33-42, 2022. Google Scholar
96. Zhu, Hongyan, Shufen Hu, Xiuhua Miao, Ying Xiao, and Guangyin Xu, "Electroacupuncture attenuates visceral pain and reverses upregulation of TRPV1 expression in adult rats with neonatal maternal deprivation," Chinese Medicine, Vol. 7, No. 1, 1-9, 2016. Google Scholar
97. Ponnapalli, V. L. N. P., Shanumugam Karthikeyan, and Jammula L Narayana, "A circular slotted shaped UWB monopole antenna for breast cancer detection," Progress In Electromagnetics Research, Vol. 104, 57-65, 2022. Google Scholar
98. Xing, Yuxin, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, Nan He, and Sailing He, "VOC detections with optical spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022. Google Scholar
99. Wang, Xu-Dong, Otto S. Wolfbeis, and Robert J. Meier, "Luminescent probes and sensors for temperature," Chemical Society Reviews, Vol. 42, No. 19, 7834-7869, 2013.
doi:10.1039/c3cs60102a Google Scholar
100. Sedlmeier, Andreas, Daniela E. Achatz, Lorenz H. Fischer, Hans H. Gorris, and Otto S. Wolfbeis, "Photon upconverting nanoparticles for luminescent sensing of temperature," Nanoscale, Vol. 4, No. 22, 7090-7096, 2012.
doi:10.1039/c2nr32314a Google Scholar
101. Vetrone, Fiorenzo, Rafik Naccache, Alicia Zamarron, Angeles Juarranz de la Fuente, Francisco Sanz-Rodriguez, Laura Martinez Maestro, Emma Martin Rodriguez, Daniel Jaque, Jose Garcia Sole, and John A. Capobianco, "Temperature sensing using fluorescent nanothermometers," ACS Nano, Vol. 4, No. 6, 3254-3258, Jun. 2010.
doi:10.1021/nn100244a Google Scholar
102. Zimmers, A., L. Aigouy, M. Mortier, A. Sharoni, Siming Wang, K. G. West, J. G. Ramirez, and Ivan K. Schuller, "Role of thermal heating on the voltage induced insulator-metal transition in VO," Physical Review Letters, Vol. 110, No. 5, Jan. 29 2013.
doi:10.1103/PhysRevLett.110.056601 Google Scholar
103. Rodriguez-Sevilla, Paloma, Yuhai Zhang, Patricia Haro-Gonzalez, Francisco Sanz-Rodriguez, Francisco Jaque, Jose Garca Sole, Xiaogang Liu, and Daniel Jaque, "Thermal scanning at the cellular level by an optically trapped upconverting fluorescent particle," Advanced Materials, Vol. 28, No. 12, 2421-2426, Mar. 23 2016.
doi:10.1002/adma.201505020 Google Scholar
104. Kilbane, Jacob D., Emory M. Chan, Christian Monachon, Nicholas J. Borys, Elizabeth S. Levy, Andrea D. Pickel, Jeffrey J. Urban, P. James Schuck, and Chris Dames, "Far-field optical nanothermometry using individual sub-50 nm upconverting nanoparticles," Nanoscale, Vol. 8, No. 22, 11611-11616, 2016.
doi:10.1039/c6nr01479h Google Scholar
105. Janjua, R. A., C. Gao, R. Dai, Z. Sui, et al., "Na-driven nucleation of NaYF:Yb,Er nanocrystals and effect of temperature on their structural transformations and luminescent properties," Journal of Physical Chemistry, Vol. 122, No. 40, 23242-23250, 2018. Google Scholar
106. Wang, Feng, Yu Han, Chin Seong Lim, Yunhao Lu, Juan Wang, Jun Xu, Hongyu Chen, Chun Zhang, Minghui Hong, and Xiaogang Liu, "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping," Nature, Vol. 463, No. 7284, 1061-1065, Feb. 25 2010.
doi:10.1038/nature08777 Google Scholar
107. Mai, Hao-Xin, Ya-Wen Zhang, Ling-Dong Sun, and Chun-Hua Yan, "Size-and phase-controlled synthesis of monodisperse NaYF:Yb, Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy," The Journal of Physical Chemistry C, Vol. 111, No. 37, 13730-13739, 2007. Google Scholar
108. Boyer, John-Christopher, Fiorenzo Vetrone, Louis A. Cuccia, and John A. Capobianco, "Synthesis of colloidal upconverting NaYbF nanocrystals doped with Er, Yb and Tm, Yb via thermal decomposition of lanthanide trifluoroacetate precursors," Journal of The American Chemical Society, Vol. 128, No. 23, 7444-7445, 2006. Google Scholar
109. Chen, Bing, Wei Kong, Na Wang, Guangyu Zhu, and Feng Wang, "Oleylamine-mediated synthesis of small NaYbF nanoparticles with tunable size," Chemistry of Materials, Vol. 31, No. 13, 4779-4786, 2019. Google Scholar
110. Shan, Jingning and Yiguang Ju, "A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF:Yb, Er upconversion nanophosphors," Nanotechnology, Vol. 20, No. 27, 275603, 2009. Google Scholar
111. Yi, Guangshun, Huachang Lu, Shuying Zhao, Yue Ge, Wenjun Yang, Depu Chen, and Liang-Hong Guo, "Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF:Yb,Er infrared-to-visible up-conversion phosphors," Nano Letters, Vol. 4, No. 11, 2191-2196, 2004. Google Scholar
112. Yang, Zhenyu, Patrick Gredin, and Michel Mortier, "Extremely straightforward room temperature co-precipitation method to synthesize cubic KYF4: Yb/Er up-conversion nanoparticles in deionized water-ethanol solution," Optical Materials, Vol. 98, 109458, 2019. Google Scholar
113. Lin, Min, Ying Zhao, Shu Qi Wang, Ming Liu, Zhen Feng Duan, Yong Mei Chen, Fei Li, Feng Xu, and Tian Jian Lu, "Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications," Biotechnology Advances, Vol. 30, No. 6, 1551-1561, Nov. 2012.
doi:10.1016/j.biotechadv.2012.04.009 Google Scholar
114. Halimi, Ilias, Emille M. Rodrigues, Steven L. Maurizio, Hui-Qiao Tina Sun, Manjot Grewal, Emma M. Boase, Nan Liu, Riccardo Marin, and Eva Hemmer, "Pick your precursor! tailoring the size and crystal phase of microwave-synthesized sub-10 nm upconverting nanoparticles," Journal of Materials Chemistry C, Vol. 7, No. 48, 15364-15374, Dec. 28 2019.
doi:10.1039/c9tc04817k Google Scholar
115. Wang, Hai-Qiao, Richard D. Tilley, and Thomas Nann, "Size and shape evolution of upconverting nanoparticles using microwave assisted synthesis," Crystengcomm, Vol. 12, No. 7, 1993-1996, 2010.
doi:10.1039/b927225a Google Scholar
116. Wang, Hai-Qiao and Thomas Nann, "Monodisperse upconverting nanocrystals by microwave-assisted synthesis," ACS Nano, Vol. 3, No. 11, 3804-3808, Nov. 2009.
doi:10.1021/nn9012093 Google Scholar
117. Wilhelm, Stefan, M. Kaiser, C. Würth, et al., "Water dispersible upconverting nanoparticles: Effects of surface modification on their luminescence and colloidal stability," Nanoscale, Vol. 7, No. 4, 1403-1410, Jan. 2015. Google Scholar
118. Liu, Deming, Xiaoxue Xu, Yi Du, Xian Qin, Yuhai Zhang, Chenshuo Ma, Shihui Wen, Wei Ren, Ewa M. Goldys, James A. Piper, Shixue Dou, Xiaogang Liu, and Dayong Jin, "Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals," Nature Communications, Vol. 7, 10254, Jan. 2016.
doi:10.1038/ncomms10254 Google Scholar
119. Menyuk, N., K. Dwight, and J. W. Pierce, "NaYF:Yb, Er --- An efficient upconversion phosphor," Applied Physics Letters, Vol. 21, No. 4, 159-161, Aug. 1972. Google Scholar
120. Krämer, K. W., D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, "Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors," Chemistry of Materials, Vol. 16, No. 7, 1244-1251, Apr. 6 2004.
doi:10.1021/cm031124o Google Scholar
121. Zheng, Kezhi, Lili Wang, Daisheng Zhang, Dan Zhao, and Weiping Qin, "Power switched multiphoton upconversion emissions of Er in Yb/Er codoped β-NaYF microcrystals induced by 980 nm excitation," Optics Express, Vol. 18, No. 3, 2934-2939, 2010. Google Scholar
122. Som, Sudipta, Chung-Hsin Lu, Che-Yuan Yang, and Subrata Das, "Synthesis and design of NaYF microprisms via a microwave-assisted approach for highly sensitive optical thermometry applications," Journal of The American Ceramic Society, Vol. 104, No. 10, 5168-5181, 2021. Google Scholar
123. Zhang, Ya-Wen, Xiao Sun, Rui Si, Li-Ping You, and Chun-Hua Yan, "Single-crystalline and monodisperse LaF triangular nanoplates from a single-source precursor," Journal of the American Chemical Society, Vol. 127, No. 10, 3260-3261, 2005. Google Scholar
124. Shan, Jingning, Xiao Qin, Nan Yao, and Yiguang Ju, "Synthesis of monodisperse hexagonal NaYF:Yb, Ln (Ln=Er, Ho and Tm) upconversion nanocrystals in TOPO," Nanotechnology, Vol. 18, No. 44, 445607, 2007. Google Scholar
125. Shan, Jingning and Yiguang Ju, "Controlled synthesis of lanthanide-doped NaYF upconversion nanocrystals via ligand induced crystal phase transition and silica coating," Applied Physics Letters, Vol. 91, No. 12, Sep. 17 2007.
doi:10.1063/1.2783476 Google Scholar
126. Yi, Guang-Shun and Gan-Moog Chow, "Water-soluble NaYF:Yb, Er(Tm)/NaYF/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence," Chemistry of Materials, Vol. 19, No. 3, 341-343, 2007. Google Scholar
127. Mai, Hao-Xin, Ya-Wen Zhang, Rui Si, Zheng-Guang Yan, Ling-Dong Sun, Li-Ping You, and Chun-Hua Yan, "High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties," Journal of the American Chemical Society, Vol. 128, No. 19, 6426-6436, May 17 2006.
doi:10.1021/ja060212h Google Scholar
128. Boyer, John-Christopher, Louis A. Cuccia, and John A. Capobianco, "Synthesis of colloidal upconverting NaYF:Er/Yb and Tm/Yb monodisperse nanocrystals," Nano Letters, Vol. 7, No. 3, 847-852, 2007. Google Scholar
129. Yi, Guang Shun and Gan Moog Chow, "Synthesis of hexagonal-phase NaYF:Yb, Er and NaYF:Yb, Tm nanocrystals with efficient up-conversion fluorescence," Advanced Functional Materials, Vol. 16, No. 18, 2324-2329, 2006. Google Scholar
130. Mai, Hao-Xin, Ya-Wen Zhang, Ling-Dong Sun, and Chun-Hua Yan, "Size- and phase-controlled synthesis of monodisperse NaYF:Yb,Er nanocrystals from a unique delayed nucleation pathway monitored with upconversion spectroscopy," Journal of Physical Chemistry C, Vol. 111, No. 37, 13730-13739, Sep. 20 2007.
doi:10.1021/jp073919e Google Scholar
131. Boyer, John-Christopher, Fiorenzo Vetrone, Louis A. Cuccia, and John A. Capobianco, "Synthesis of colloidal upconverting nayf nanocrystals doped with Er, Yb and Tm, Yb via thermal decomposition of lanthanide trifluoroacetate precursors," Journal of The American Chemical Society, Vol. 128, No. 23, 7444-7445, Jun. 14 2006.
doi:10.1021/ja061848b Google Scholar
132. Liu, Chenghui, Hui Wang, Xiao Li, and Depu Chen, "Monodisperse, size-tunable and highly efficient β-NaYF:Yb, Er (Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications," Journal of Materials Chemistry, Vol. 19, No. 21, 3546-3553, 2009. Google Scholar
133. Li, Zhengquan and Yong Zhang, "Monodisperse silica-coated polyvinylpyrrolidone/NaYF nanocrystals with multicolor upconversion fluorescence emission," Angewandte Chemie, Vol. 118, No. 46, 7896-7899, 2006. Google Scholar
134. Li, Zhengquan and Yong Zhang, "An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence," Nanotechnology, Vol. 19, No. 34, 345606, 2008. Google Scholar
135. Ehlert, Oliver, Ralf Thomann, Masih Darbandi, and Thomas Nann, "A four-color colloidal multiplexing nanoparticle system," ACS Nano, Vol. 2, No. 1, 120-124, Jan. 2008.
doi:10.1021/nn7002458 Google Scholar
136. Wang, Feng and Xiaogang Liu, "Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF nanoparticles," Journal of the American Chemical Society, Vol. 130, No. 17, 5642-5643, 2008. Google Scholar
137. Janjua, Raheel Ahmed, Obaid Iqbal, Muhammad Aqeel Ahmed, Abdullah A Al-Kahtani, Sara Saeed, Muhammad Imran, and Abdul Ghafar Wattoo, "Homo-hetero/core-shell structure design strategy of NaYF nanocrystals for superior upconversion luminescence," RSC Advances, Vol. 11, No. 34, 20746-20751, 2021. Google Scholar
138. Haase, Markus and Helmut Schaefer, "Upconverting nanoparticles," Angewandte Chemie-International Edition, Vol. 50, No. 26, 5808-5829, 2011.
doi:10.1002/anie.201005159 Google Scholar
139. Whitesides, G. M., "The `right' size in nanobiotechnology," Nature Biotechnology, Vol. 21, No. 10, 1161-1165, Oct. 2003.
doi:10.1038/nbt872 Google Scholar
140. Ostrowski, Alexis D., Emory M. Chan, Daniel J. Gargas, Elan M. Katz, Gang Han, P. James Schuck, Delia J. Milliron, and Bruce E. Cohen, "Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals," Acs Nano, Vol. 6, No. 3, 2686-2692, Mar. 2012.
doi:10.1021/nn3000737 Google Scholar
141. Heer, Stephan, K. Kömpe, H.-U. Güdel, and M. Haase, "Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF nanocrystals," Advanced Materials, Vol. 16, No. 23-24, 2102-2105, Dec. 2004. Google Scholar
142. Heer, S., O. Lehmann, M. Haase, and H. Güdel, "Blaue, grüne und rote upconversion‐emission von lanthanoid‐dotierten LuPO‐und YbPO‐nanokristallen in transparenter kolloidaler lösung," Angewandte Chemie, Vol. 115, No. 27, 3288-3291, Jul. 2003. Google Scholar
143. Schäfer, H., P. Ptacek, H. Eickmeier, and M. Haase, "Synthesis of hexagonal Yb, Er-doped NaYF nanocrystals at low temperature," Adv Funct Mater, Vol. 19, No. 19, 3091-3097, Oct. 2009. Google Scholar
144. Ostrowski, Alexis D., Emory M. Chan, Daniel J. Gargas, Elan M. Katz, Gang Han, P. James Schuck, Delia J. Milliron, and Bruce E. Cohen, "Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals," Acs Nano, Vol. 6, No. 3, 2686-2692, Mar. 2012.
doi:10.1021/nn3000737 Google Scholar
145. Rinkel, Thorben, A. N. Raj, S. Dühnen, and M. Haase, "Synthesis of 10 nm β-NaYF:Yb,Er/NaYF core/shell upconversion nanocrystals with 5 nm particle cores," Angewandte Chemie International Edition, Vol. 55, No. 3, 1164-1167, Jan. 2016. Google Scholar
146. Rinkel, Thorben, J. Nordmann, A. N. Raj, and M. Haase, "Ostwald-ripening and particle size focussing of sub-10 nm NaYF upconversion nanocrystals," Nanoscale, Vol. 6, No. 23, 14523-14530, 2014. Google Scholar
147. Wang, Guofeng, Weiping Qin, Lili Wang, Guodong Wei, Peifen Zhu, and Ryongjin Kim, "Intense ultraviolet upconversion luminescence from hexagonal NaYF:Yb/Tm microcrystals," Optics Express, Vol. 16, No. 16, 11907-11914, 2008. Google Scholar
148. Jahanbazi, Forough and Yuanbing Mao, "Recent advances on metal oxide-based luminescence thermometry," Journal of Materials Chemistry C, Vol. 9, No. 46, 16410-16439, Dec. 2 2021.
doi:10.1039/d1tc03455c Google Scholar
149. McLaurin, Emily J., Liam R. Bradshaw, and Daniel R. Gamelin, "Dual-emitting nanoscale temperature sensors," Chemistry of Materials, Vol. 25, No. 8, 1283-1292, Apr. 23 2013.
doi:10.1021/cm304034s Google Scholar
150. Cheng, Yao, Yan Gao, Hang Lin, Feng Huang, and Yuansheng Wang, "Strategy design for ratiometric luminescence thermometry: circumventing the limitation of thermally coupled levels," Journal of Materials Chemistry C, Vol. 6, No. 28, 7462-7478, Jul. 28 2018.
doi:10.1039/c8tc02401d Google Scholar
151. Wade, Scott A., Stephen F. Collins, and Gregory W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," Journal of Applied Physics, Vol. 94, No. 8, 4743-4756, 2003. Google Scholar
152. Wawrzynczyk, Dominika, Artur Bednarkiewicz, Marcin Nyk, Wieslaw Strek, and Marek Samoc, "Neodymium(iii) doped fluoride nanoparticles as non-contact optical temperature sensors," Nanoscale, Vol. 4, No. 22, 6959-6961, 2012.
doi:10.1039/c2nr32203j Google Scholar
153. Geitenbeek, Robin G., P. Tim Prins, Wiebke Albrecht, Alfons van Blaaderen, Bert M. Weckhuysen, and Andries Meijerink, "NaYF:Er,Yb/SiO core/shell upconverting nanocrystals for luminescence thermometry up to 900 K," The Journal of Physical Chemistry C, Vol. 121, No. 6, 3503-3510, 2017. Google Scholar
154. Li, Leipeng, Feng Qin, Yuan Zhou, Yangdong Zheng, Hua Zhao, and Zhiguo Zhang, "Exploiting the Yb and Er codoped β-NaYF nanoparticles as luminescent thermometers for white-led-free thermal sensing at the nanoscale," ACS Applied Nano Materials, Vol. 1, No. 4, 1912-1920, 2018. Google Scholar
155. Runowski, Marcin, N. Stopikowska, D. Szeremeta, S. Goderski, M. Skwierczyńska, and S. Lis, "Upconverting lanthanide fluoride core@ shell nanorods for luminescent thermometry in the first and second biological windows: β-NaYF:Yb-Er@ SiO temperature sensor," ACS Appl Mater Interfaces, Vol. 11, No. 14, 13389-13396, Apr. 2019. Google Scholar
156. Mi, Chao, Jiajia Zhou, Fan Wang, Gungun Lin, and Dayong Jin, "Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability," Chemistry of Materials, Vol. 31, No. 22, 9480-9487, Nov. 26 2019.
doi:10.1021/acs.chemmater.9b03466 Google Scholar
157. Wang, Yubin, Lei Lei, Renguang Ye, Guohua Jia, Youjie Hua, Degang Deng, and Shiqing Xu, "Integrating positive and negative thermal quenching effect for ultrasensitive ratiometric temperature sensing and anti-counterfeiting," ACS Applied Materials & Interfaces, Vol. 13, No. 20, 23951-23959, May 26 2021.
doi:10.1021/acsami.1c05611 Google Scholar
158. Wu, Xiaofeng, Shiping Zhan, Junbo Han, and Yunxin Liu, "Nanoscale ultrasensitive temperature sensing based on upconversion nanoparticles with lattice self-adaptation," Nano Letters, Vol. 21, No. 1, 272-278, Jan. 13 2021.
doi:10.1021/acs.nanolett.0c03637 Google Scholar
159. Trejgis, K., K. Ledwa, A. Bednarkiewicz, and L. Marciniak, "A single-band ratiometric luminescent thermometer based on tetrafluorides operating entirely in the infrared region," Nanoscale Advances, Vol. 4, No. 2, 437-446, Jan. 18 2022.
doi:10.1039/d1na00727k Google Scholar
160. Marciniak, Lukasz, Aleksandra Pilch, Sebastian Arabasz, Dayong Jin, and Artur Bednarkiewicz, "Heterogeneously Nd doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry," Nanoscale, Vol. 9, No. 24, 8288-8297, 2017. Google Scholar
161. Cai, Zhenlu, Shiliang Kang, Xiongjiang Huang, Xiaoqian Song, Xiudi Xiao, Jianrong Qiu, and Guoping Dong, "A novel wide temperature range and multi-mode optical thermometer based on bi-functional nanocrystal-doped glass ceramics," Journal of Materials Chemistry C, Vol. 6, No. 37, 9932-9940, Oct. 7 2018.
doi:10.1039/c8tc03642j Google Scholar
162. Pilch-Wróbel, Aleksandra, Karolina Ledwa, Agata Kotulska, and Artur Bednarkiewicz, "The influence of Ce codoping on upconversion in nanocrystalline NaYF:Yb, Tm," Journal of Luminescence, Vol. 251, 119116, Nov. 2022.
doi:10.1016/j.jlumin.2022.119116 Google Scholar
163. Yao, Hanyu, Honglie Shen, and Quntao Tang, "Enhanced upconversion luminescence and temperature sensitivity of NaYF:Er,Yb phosphors via Mn doping," Materials Research Express, Vol. 6, No. 12, 125017, Nov. 2019. Google Scholar
164. Ryszczyńska, S., I. R. Martín, and T. Grzyb, "Near-infrared optical nanothermometry via upconversion of ho3+-sensitized nanoparticles," Sci. Rep., Vol. 13, No. 1, 14819, Sep. 2023. Google Scholar
165. Cao, Baosheng, Yanan Bao, Yang Liu, Jingyu Shang, Zhenyi Zhang, Yangyang He, Zhiqing Feng, and Bin Dong, "Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF upconversion nanocrystals," Chemical Engineering Journal, Vol. 385, 123906, Apr. 2020. Google Scholar
166. Chen, Xiaoqin, Jing Sun, Huan Zhao, Ke Yang, Yuda Zhu, Hongrong Luo, Kui Yu, Hongsong Fan, and Xingdong Zhang, "Theranostic system based on NaY(Mn)F:Yb/er upconversion nanoparticles with multi-drug resistance reversing ability," Journal of Materials Chemistry B, Vol. 6, No. 21, 3586-3599, 2018. Google Scholar
167. Ba, Zhaojing, Min Hu, Yiming Zhao, Yiqing Wang, Jing Wang, and Zhenxi Zhang, "Double nir laser stimulation and enhancing the thermal sensitivity of Er/Tm/Nd doped multilayer core-shell nanoparticles," Nanotechnology, Vol. 29, No. 35, 355704, 2018. Google Scholar
168. Janjua, Raheel Ahmed, Umer Farooq, Rucheng Dai, Zhongping Wang, and Zengming Zhang, "Wide-range ratiometric upconversion luminescence thermometry based on non-thermally coupled levels of er in high-temperature cubic phase NaYF:Yb,Er," Optics Letters, Vol. 44, No. 19, 4678-4681, 2019. Google Scholar
169. Nie, Jingheng, Weitao Ying, Xuemei Fan, Shiqing Xu, Zhenhua Gao, Jianmin Gu, and Shimin Liu, "Cryogenic dependent energy manipulation in nonthermally coupled levels for multicolor upconversion luminescence," Journal of Physical Chemistry C, Vol. 125, No. 34, 19040-19047, Sep. 2 2021.
doi:10.1021/acs.jpcc.1c06701 Google Scholar
170. Cheng, Zhenlong, Mingzhou Meng, Jiaoyu Wang, Zhuoyue Li, Jiao He, Hao Liang, Xin Qiao, Yuanli Liu, and Jun Ou, "High-sensitivity NaYF:Yb/Ho/Tm phosphors for optical temperature sensing based on thermally coupled and non-thermally coupled energy levels," Nanoscale, Vol. 15, No. 26, 11179-11189, 2023. Google Scholar
171. Martins, Joana Costa, A. R. N. Bastos, R. A. S. Ferreira, X. Wang, G. Chen, and L. D. Carlos, "Primary luminescent nanothermometers for temperature measurements reliability assessment," Advanced Photonics Research, Vol. 2, No. 5, May 2021. Google Scholar
172. Meng, Mingzhou, Tianmei Zhang, Jiaoyu Wang, Zhenlong Cheng, Jianghua Yang, Xin Qiao, Jian Wen, Ute Resch-Genger, and Jun Ou, "Fluorescence temperature sensing of NaYF:Yb/Tm@ NaGdF:Nd/Yb nanoparticles at low and high temperatures," Nanotechnology, Vol. 33, No. 45, 455502, 2022. Google Scholar
173. Xu, Wei, Le Zhao, Fengkai Shang, Longjiang Zheng, and Zhiguo Zhang, "Modulating the thermally coupled status of energy levels in rare earth ions for sensitive optical temperature sensing," Journal of Luminescence, Vol. 249, 119042, Sep. 2022.
doi:10.1016/j.jlumin.2022.119042 Google Scholar
174. Marciniak, L., K. Prorok, L. Francés-Soriano, J. Pérez-Prieto, and A. Bednarkiewicz, "A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer," Nanoscale, Vol. 8, No. 9, 5037-5042, 2016. Google Scholar
175. Li, Hanyang, Feng Wei, Yanzeng Li, Miao Yu, Yu Zhang, Lu Liu, and Zhihai Liu, "Optical fiber sensor based on upconversion nanoparticles for internal temperature monitoring of Li-ion batteries," Journal of Materials Chemistry C, Vol. 9, No. 41, 14757-14765, Oct. 28 2021.
doi:10.1039/d1tc03701c Google Scholar
176. Ning, Xiaomin, Na Liu, Jinyang Liu, Yue Wu, Jing Qian, Wenchao Zhang, and Wen Gu, "Temperature sensing and bioimaging realized in NaErF:40%Tm@NaYF with extremely intense red upconversion and suitable R/G emission ratio," Optical Materials, Vol. 131, 112659, Sep. 2022. Google Scholar