Vol. 150
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-11-29
Complementary Folded Line Metamaterial Loaded MIMO Antenna for S-Band Applications
By
Progress In Electromagnetics Research C, Vol. 150, 145-155, 2024
Abstract
This paper introduces a MIMO antenna featuring a complementary folded-line metamaterial (CFL-MTM) design, it wants to reduce mutual interaction among very close microstrip patch antenna components. The antenna elements have an edge-to-edge spacing of roughly 0.0933λ0 (7 mm). By integrating CFL-MTM elements into the antenna structure, the antenna achieves negative permittivity and permeability characteristics, resulting in a compact size of 37 × 44 × 1.6 mm3. The antenna is suitable for S band applications, covering a bandwidth of approximately 3.121-4.277 GHz (1156 MHz). The incorporation of CFL-MTM results in a negative refractive index area, which effectively controls and reduces mutual coupling between the antenna parts. The antenna's dimension is optimized by keeping the CFL-MTM smaller than the resonant wavelength. Furthermore, the characteristics of the suggested MIMO antenna, such as ECC, CCL, and TARC, are assessed to show that it is suitable for S band applications.
Citation
Yugender Mood, and Ramasamy Pandeeswari, "Complementary Folded Line Metamaterial Loaded MIMO Antenna for S-Band Applications," Progress In Electromagnetics Research C, Vol. 150, 145-155, 2024.
doi:10.2528/PIERC24060604
References

1. Sharawi, Mohammad S., "Printed multi-band MIMO antenna systems and their performance metrics," IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, 218-232, 2013.

2. Shams, Khan M. Z. and M. Ali, "A CPW-fed inductively coupled modified bow-tie slot antenna," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 3, 365-368, Washington, DC, USA, Jul. 2005.

3. Mohamadzade, Bahare, Ali Lalbakhsh, Roy B. V. B. Simorangkir, Alireza Rezaee, and Raheel M. Hashmi, "Mutual coupling reduction in microstrip array antenna by employing cut side patches and EBG structures," Progress In Electromagnetics Research M, Vol. 89, 179-187, 2020.

4. Farahani, Mohammadmahdi, Javad Pourahmadazar, Mohammad Akbari, Mourad Nedil, Abdel Razik Sebak, and Tayeb A. Denidni, "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterial polarization-rotator wall," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2324-2327, 2017.

5. Arun, Henridass, Aswathy K. Sarma, Malathi Kanagasabai, Sangeetha Velan, Chinnambeti Raviteja, and M. Gulam Nabi Alsath, "Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 277-280, 2014.

6. Margaret, D. Helena, M. R. Subasree, S. Susithra, S. S. Keerthika, and B. Manimegalai, "Mutual coupling reduction in MIMO antenna system using EBG structures," 2012 International Conference on Signal Processing and Communications (SPCOM), 1-5, Bangalore, India, Jul. 2012.

7. Ghosh, Jeet, Sandip Ghosal, Debasis Mitra, and Sekhar Ranjan Bhadra Chaudhuri, "Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator," Progress In Electromagnetics Research Letters, Vol. 59, 115-122, 2016.

8. Iqbal, Amjad, Omar A. Saraereh, Amal Bouazizi, and Abdul Basir, "Metamaterial-based highly isolated MIMO antenna for portable wireless applications," Electronics, Vol. 7, No. 10, 267, 2018.

9. Farahani, Hossein Sarbandi, Mehdi Veysi, Manouchehr Kamyab, and Alireza Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 57-59, 2010.

10. Mood, Yugender and R. Pandeeswari, "A novel SRR metamaterial inspired CPW-fed dual band MIMO antenna for Sub-6 GHz 5G application," Wireless Personal Communications, Vol. 130, No. 2, 1277-1293, 2023.

11. Yu, Ang and Xuexia Zhang, "A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 170-172, 2003.

12. Simovski, Constantin R., "Plane-wave reflection and transmission by grids of conducting Ω-particles and dispersion of Ω electromagnetic crystals," AEU --- International Journal of Electronics and Communications, Vol. 57, No. 5, 358-364, 2003.

13. Saadoun, Mamdouh M. I. and Nader Engheta, "A reciprocal phase shifter using novel pseudochiral or Ω medium," Microwave and Optical Technology Letters, Vol. 5, No. 4, 184-188, 1992.

14. Kondori, Hamideh, Mohammad Ali Mansouri-Birjandi, and Saeed Tavakoli, "Reducing mutual coupling in microstrip array antenna using metamaterial spiral resonator," International Journal of Computer Science Issues (IJCSI), Vol. 9, No. 3, 51, 2012.

15. Daniel, R. Samson, "Broadband µ-negative antenna using ELC unit cell," AEU --- International Journal of Electronics and Communications, Vol. 118, 153147, 2020.

16. Khan, Asif, Yejun He, and Zhi Ning Chen, "An eight-port circularly polarized wideband MIMO antenna based on a metamaterial-inspired element for 5G mmWave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 7, 1572-1576, 2023.

17. Yusuf, Yazid and Xun Gong, "A low-cost patch antenna phased array with analog beam steering using mutual coupling and reactive loading," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 81-84, 2008.

18. Fan, Yifeng, "Research and design of non-Foster active metamaterials," Ph.D. dissertation, Queen Mary University of London, London, UK, 2013.

19. Markoš, P. and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Physical Review E, Vol. 65, No. 3, 036622, 2002.

20. Le, Minh Thuy, Quoc Cuong Nguyen, and Tan Phu Vuong, "Design of high-gain and beam steering antennas using a new planar folded-line metamaterial structure," International Journal of Antennas and Propagation, Vol. 2014, No. 1, 302580, 2014.

21. Uddin, Md. Nazim, Md. Nurul Anwar Tarek, Md. Khadimul Islam, and Elias A. Alwan, "A reconfigurable beamsteering antenna array at 28 ghz using a corporate-fed 3-bit phase shifter," IEEE Open Journal of Antennas and Propagation, Vol. 4, 126-140, 2023.

22. Lheurette, Éric, GrÉgory Houzet, Jorge Carbonell, Fuli Zhang, Olivier Vanbesien, and Didier Lippens, "Omega-type balanced composite negative refractive index materials," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3462-3469, 2008.

23. Cui, Tie-Jun, Hui-Feng Ma, Ruo Liu, Bo Zhao, Qiang Cheng, and Jessie Chin, "A symmetrical circuit model describing all kinds of circuit metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.

24. Chen, Hongsheng, Lixin Ran, Jiangtao Huangfu, Xianmin Zhang, Kangsheng Chen, Tomasz M. Grzegorczyk, and Jin Au Kong, "Left-handed materials composed of only S-shaped resonators," Physical Review E --- Statistical, Nonlinear, and Soft Matter Physics, Vol. 70, No. 5, 057605, 2004.

25. Saravanan, M., V. Beslin Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," Journal of Electrical Systems and Information Technology, Vol. 5, No. 3, 263-270, 2018.

26. Al-Bawri, Samir Salem, Md. Shabiul Islam, Hin Yong Wong, Mohd Faizal Jamlos, Adam Narbudowicz, Muzammil Jusoh, Thennarasan Sabapathy, and Mohammad Tariqul Islam, "Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-fed antenna for wireless applications," Sensors, Vol. 20, No. 2, 457, 2020.

27. Costa, Filippo, Michele Borgese, Marco Degiorgi, and Agostino Monorchio, "Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices," Electronics, Vol. 6, No. 4, 95, 2017.

28. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.

29. Jeyakumar, P., Arvind Ramesh, S. Srinitha, V. Vishnu, and P. Muthuchidambaranathan, "Wideband hybrid precoding techniques for THz massive MIMO in 6G indoor network deployment," Telecommunication Systems, Vol. 79, No. 1, 71-82, 2022.

30. OuYang, J., F. Yang, and Z. M. Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 310-313, 2011.

31. Iqbal, Amjad, Ahsan Altaf, Mujeeb Abdullah, Mohammad Alibakhshikenari, Ernesto Limiti, and Sunghwan Kim, "Modified U-shaped resonator as decoupling structure in MIMO antenna," Electronics, Vol. 9, No. 8, 1321, 2020.