Vol. 115
Latest Volume
All Volumes
PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2025-08-16
Admittance and Impedance Relations at Moving Boundaries
By
Progress In Electromagnetics Research B, Vol. 115, 15-24, 2025
Abstract
Admittance and impedance (Leontovich) matching conditions at the boundary of a good conductor find widespread usage in the formulation and (numerical) solution of electromagnetic problems. Starting with the known relationships at a stationary interface, we derive manifestly covariant admittance and impedance relations in a flat space-time for a conducting body which moves with uniform velocity in free space. Explicit formulas (in the ordinary space, that is) are given for both isotropic and anisotropic conductors. Under the same hypotheses, we also derive, at the conducting interface, the surface density of four-force by means of the normal component of the relevant energy-momentum tensor. The low-velocity limit of the formulas is also presented because it is of particular interest for practical applications. Moreover, since the covariant admittance and impedance relations as well as the matching condition of the energy-momentum tensor require the unitary four-vector perpendicular to a surface in motion, we outline, in the appendices, the derivation of unitary four-vectors tangential to a hyper-line and perpendicular to a hyper-surface in the Lorentz space.
Citation
Vito Lancellotti, "Admittance and Impedance Relations at Moving Boundaries," Progress In Electromagnetics Research B, Vol. 115, 15-24, 2025.
doi:10.2528/PIERB25053003
References

1. Leontovich, M. A., "Approximate boundary conditions for the electromagnetic field on the surface of a good conductor, investigation of propagation of radio waves, part II," USSR Academy of Sciences, Physical Series, Vol. 9, No. 6, 1944.
doi:10.34218/ijmet.11.11.2020.001

2. Senior, T. B. A., "Impedance boundary conditions for imperfectly conducting surfaces," Applied Scientific Research, Section B, Vol. 8, No. 1, 418-436, Dec. 1960.
doi:10.1007/bf02920074

3. Hoppe, Daniel J., Impedance Boundary Conditions in Electromagnetics, CRC Press, Washington, DC, 1995.
doi:10.1201/9781315215365

4. Lindell, Ismo V., Methods for Electromagnetic Field Analysis, Wiley-IEEE Press, Piscataway, NJ, 1992.
doi:10.1109/9780470545249

5. Lancellotti, Vito, Advanced Theoretical and Numerical Electromagnetics. Volume 1: Static, Stationary and Time-varying Fields, 1st Ed., SciTech Publishing, London, UK, 2022.
doi:10.1049/sbew560f

6. Van Bladel, Jean G., Electromagnetic Fields, 2nd Ed., Wiley-IEEE Press, Piscataway, NJ, 2007.
doi:10.1002/047012458x

7. Collin, Robert E., Foundations for Microwave Engineering, 2nd Ed., John Wiley & Sons, 2001.
doi:10.1109/9780470544662

8. Roden, J. A. and S. D. Gedney, "The efficient implementation of the surface impedance boundary condition in general curvilinear coordinates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 10, 1954-1963, 1999.
doi:10.1109/22.795069

9. Subramaniam, S. and S. R. H. Hoole, "The impedance boundary condition in the boundary element-vector potential formulation," IEEE Transactions on Magnetics, Vol. 24, No. 6, 2503-2505, Nov. 1988.
doi:10.1109/20.92155

10. Huddleston, P. L., "Scattering by finite, open cylinders using approximate boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 2, 253-257, 1989.
doi:10.1109/8.18715

11. Lancellotti, Vito, Advanced Theoretical and Numerical Electromagnetics. Volume 2: Field Fepresentations and the Method of Moments, 1st Ed., SciTech Publishing, London, UK, 2022.
doi:10.1049/sbew560g

12. Mitzner, K. M., "An integral equation approach to scattering from a body of finite conductivity," Radio Science, Vol. 2, No. 12, 1459-1470, 1967.
doi:10.1002/rds19672121459

13. Deeley, E. M. and J. Xiang, "Improved surface impedance methods for 2-D and 3-D problems," IEEE Transactions on Magnetics, Vol. 24, No. 1, 209-211, 1988.
doi:10.1109/20.43891

14. Wang, Hao, Minjia Xu, Chen Wang, and T. Hubing, "Impedance boundary conditions in a hybrid FEM/MOM formulation," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, No. 2, 198-206, May 2003.
doi:10.1109/temc.2003.810813

15. Pathak, Prabhakar H. and Robert J. Burkholder, Electromagnetic Radiation, Scattering, and Diffraction, Wiley, United Kingdom, 2021.
doi:10.1002/9781119810544

16. Kong, Jin Au, Electromagnetic Wave Theory, 2nd Ed., Wiley, New York, NY, 1990.
doi:10.1201/9781420049763.ch35

17. Van Bladel, J., Relativity and Engineering, 1st Ed., Springer, Berlin, Heidelberg, 1984.
doi:10.1007/978-3-642-69198-0

18. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, 3rd Ed., Pergamon Press, Oxford, UK, 1971.
doi:10.1063/1.3067575

19. Cullwick, E. G., Electromagnetism and Relativity, 1st Ed., Longmans, Green and Co., London, UK, 1957.
doi:10.1049/ep.1979.0123

20. Pauli, Wolfgang, Theory of Relativity, Dover Publications, New York, NY, 1981.
doi:10.1007/978-3-662-02994-7_13

21. Sommerfeld, Arnold, Electrodynamics: Lectures on Theoretical Physics, Vol. 3, Academic Press, New York, NY, 1952.
doi:10.1063/1.3061081

22. Konopinski, E. J., Electromagnetic Fields and Relativistic Particles, 1st Ed., McGraw-Hill Book Company, New York, NY, 1981.
doi:10.1063/1.2915107

23. Møller, C., The Theory of Relativity, 2nd Ed., Clarendon Press, Oxford, UK, 1972.
doi:10.1016/b978-0-12-395657-6.50017-3

24. Epheser, H. and T. Schlomka, "Flächengrößen und elektrodynamische grenzbedingungen bei bewegten körpern," Annalen der Physik, Vol. 443, No. 3-4, 211-220, 1950.
doi:10.1002/andp.19504430313