Vol. 127
Latest Volume
All Volumes
PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2025-07-30
Classification of Severe Bacterial Pneumonia Based on CT Images and Deep Learning
By
Progress In Electromagnetics Research Letters, Vol. 127, 23-28, 2025
Abstract
Severe bacterial pneumonia is a serious respiratory disease caused by bacteria, which is mainly transmitted through the respiratory tract. To achieve early recognition of severe pneumonia patients through images, this study collected the CT images of 180 patients diagnosed with bacterial infection in the lungs on the day of emergency admission to a large regional medical center (a Top-Tier (Grade 3 A) hospital). After classification by two deputy chief physicians of the respiratory department, 93 cases of severe bacterial infection were obtained and the rest 87 cases were identified as mild bacterial infection. The CT sequences were then preprocessed and annotated to obtain 599 images with annotated lung infection areas. Together with 107 normal (non-infected) images, these bacterial infection images were randomly divided into a training set of 447 and a test set of 259. In the experiment, four deep learning methods, namely, FCN, PSPNet, deeplabv3, and deeplabv3plus, were used for training and three-class classification (severe bacterial infection, mild bacterial infection, and normal). Deeplabv3plus showed the best performance, with an overall accuracy of 96.91% (including a sensitivity of 95.25%, a specificity of 97.24%, an accuracy of 86.96%, a recall rate of 95.24%, and an F1 score of 90.91%) for severe bacterial infection. Using deep learning technology to diagnose severe pneumonia as early as possible can produce valuable treatment time for patients, thereby significantly reducing mortality and complication rates.
Citation
Ke Cui, Dawei Gong, Xiaobo Chen, Youzu Xu, Haiyan Li, Yefei Zhu, Julian Evans, Xin Gong, Zhenzhan Shi, Yinghe Xu, and Sailing He, "Classification of Severe Bacterial Pneumonia Based on CT Images and Deep Learning," Progress In Electromagnetics Research Letters, Vol. 127, 23-28, 2025.
doi:10.2528/PIERL25070203
References

1. Jain, Seema, Wesley H. Self, Richard G. Wunderink, Sherene Fakhran, Robert Balk, Anna M. Bramley, Carrie Reed, Carlos G. Grijalva, Evan J. Anderson, D. Mark Courtney, et al. "Community-acquired pneumonia requiring hospitalization among U.S. adults," New England Journal of Medicine, Vol. 373, No. 5, 415-427, 2015.
doi:10.1056/NEJMoa1500245

2. Vaughn, Valerie M., Robert P. Dickson, Jennifer K. Horowitz, and Scott A. Flanders, "Community-acquired pneumonia: A review," Jama, Vol. 332, No. 15, 1282-1295, 2024.
doi:10.1001/jama.2024.14796

3. Cillóniz, Catiaa, Cristinab Dominedò, Carolinac Garcia-Vidal, and Antonia Torres, "Community-acquired pneumonia as an emergency condition," Current Opinion in Critical Care, Vol. 24, No. 6, 531-539, 2018.
doi:10.1097/MCC.0000000000000550

4. Woodhead, Mark, Catherine A. Welch, David A. Harrison, Geoff Bellingan, and Jon G. Ayres, "Community-acquired pneumonia on the intensive care unit: Secondary analysis of 17,869 cases in the ICNARC Case Mix Programme Database," Critical Care, Vol. 10, S1, 2006.
doi:10.1186/cc4927

5. Marti, Christophe, Nicolas Garin, Olivier Grosgurin, Antoine Poncet, Christophe Combescure, Sebastian Carballo, and Arnaud Perrier, "Prediction of severe community-acquired pneumonia: A systematic review and meta-analysis," Critical Care, Vol. 16, No. 4, R141, Jul. 2012.
doi:10.1186/cc11447

6. Luo, Ning, Han Zhang, Yang Zhou, ZiXuan Kong, WeiHang Sun, Nan Huang, and AoDan Zhang, "Utility of chest CT in diagnosis of COVID-19 pneumonia," Diagnostic and Interventional Radiology, Vol. 26, No. 5, 437-442, 2020.
doi:10.5152/dir.2020.20144

7. Kwon, TaeWoo, Sang Pyo Lee, Dongmin Kim, Jinseong Jang, Myungjae Lee, Shin Uk Kang, Heejin Kim, Keunyoung Oh, Jinhee On, Young Jae Kim, et al. "Diagnostic performance of artificial intelligence model for pneumonia from chest radiography," PLoS One, Vol. 16, No. 4, e0249399, Apr. 2021.
doi:10.1371/journal.pone.0249399

8. Xu, Zhanpeng, Yiming Jiang, Jiali Ji, Erik Forsberg, Yuanpeng Li, and Sailing He, "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," Optics Express, Vol. 28, No. 21, 30686-30700, 2020.
doi:10.1364/oe.406036

9. Zhu, He, Jing Luo, Jiaqi Liao, and Sailing He, "High-accuracy rapid identification and classification of mixed bacteria using hyperspectral transmission microscopic imaging and machine learning," Progress In Electromagnetics Research, Vol. 178, 49-62, 2023.
doi:10.2528/pier23082303

10. Wang, Lei and Sailing He, "A 3-band iteration method to transfer knowledge learned in RGB pretrained models to hyperspectral domain," Progress In Electromagnetics Research M, Vol. 128, 1-9, 2024.
doi:10.2528/pierm23112103

11. Zhang, Yu-han, Xiao-fei Hu, Jie-chao Ma, Xian-qi Wang, Hao-ran Luo, Zi-feng Wu, Shu Zhang, De-jun Shi, Yi-zhou Yu, Xiao-ming Qiu, et al. "Clinical applicable AI system based on deep learning algorithm for differentiation of pulmonary infectious disease," Frontiers in Medicine, Vol. 8, 753055, Dec. 2021.
doi:10.3389/fmed.2021.753055

12. Huang, Tinglong, Xuelan Zheng, Lisui He, and Zhiliang Chen, "Diagnostic value of deep learning-based CT feature for severe pulmonary infection," Journal of Healthcare Engineering, Vol. 2021, No. 1, 5359084, Nov. 2021.
doi:10.1155/2021/5359084

13. Long, Jonathan, Evan Shelhamer, and Trevor Darrell, "Fully convolutional networks for semantic segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 3431-3440, 2015.
doi:10.1109/cvpr.2015.7298965

14. Zhao, Hengshuang, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia, "Pyramid scene parsing network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2881-2890, 2017.
doi:10.1109/cvpr.2017.660

15. Chen, Liang-Chieh, George Papandreou, Florian Schroff, and Hartwig Adam, "Rethinking atrous convolution for semantic image segmentation," Arxiv Preprint ArXiv:1706.05587, 2017.
doi:10.48550/arXiv.1706.05587

16. Chen, Liang-Chieh, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam, "Encoder-decoder with atrous separable convolution for semantic image segmentation," Proceedings of the European Conference on Computer Vision (ECCV), 801-818, 2018.
doi:10.1007/978-3-030-01234-2_49

17. MMSegmentation Contributors "OpenMMLab semantic segmentation toolbox and benchmark," https://github.com/open-mmlab/mmsegmentation, 2020.

18. Hiremath, Amogh, Vidya Sankar Viswanathan, Kaustav Bera, Rakesh Shiradkar, Lei Yuan, Keith Armitage, Robert Gilkeson, Mengyao Ji, Pingfu Fu, Amit Gupta, et al. "Deep learning reveals lung shape differences on baseline chest CT between mild and severe COVID-19: A multi-site retrospective study," Computers in Biology and Medicine, Vol. 177, 108643, 2024.
doi:10.1016/j.compbiomed.2024.108643