Vol. 40
Latest Volume
All Volumes
PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-05-23
Guided-Mode Resonance Filter Compensated to Operate on a Curved Surface
By
Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013
Abstract
Guided-mode resonance filters (GMRFs) are highly compact structures that can produce a strong frequency response from a single thin layer of dielectric. When a GMRF is formed onto a curved surface, the local angle of incidence varies over the aperture of the device and the overall performance significantly degrades. In the present work, we spatially varied the grating period of a curved GMRF to perfectly compensate for the local angle of incidence. The performance of the curved device actually surpassed that of a flat device because it also compensated for the spherical wave front from the source. This paper summarizes our design process and experimental results obtained around 25 GHz.
Citation
Raymond C. Rumpf Marvin Gates Carrie L. Kozikowski William A. Davis , "Guided-Mode Resonance Filter Compensated to Operate on a Curved Surface," Progress In Electromagnetics Research C, Vol. 40, 93-103, 2013.
doi:10.2528/PIERC13041209
http://www.jpier.org/PIERC/pier.php?paper=13041209
References

1. Magnusson, R. and S. Wang, "New principle for optical filters Applied Physics Letters,", Vol. 61, 1022-1024, 1992.
doi:10.1364/AO.32.002606

2. Wang, S. and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied Optics, Vol. 32, 2606-2613, 1993.
doi:10.1364/OL.23.001556

3. Liu, Z., S. Tibuleac, D. Shin, P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Optics Letters, Vol. 23, 1556-1558, 1998.

4. Magnusson, R. and S.-S. Wang, "Optical guided-mode resonance filter,", Google Patents, 1993.
doi:10.1364/OE.15.003452

5. Rumpf, R. C. and E. G. Johnson, "Modeling fabrication to accurately place GMR resonances," Optics Express, Vol. 15, 3452-3464, 2007.

6. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.
doi:10.1109/8.192167

7. Bertoni, H. L., L.-H. Cheo, and T. Tamir, "Frequency-selective reflection and transmission by a periodic dielectric layer," IEEE Transactions on Antennas and Propagation, Vol. 37, 78-83, 1989.
doi:10.1109/TAP.2012.2194665

8. Coves, A., S. Marini, B. Gimeno, and V. Boria, "Full-wave analysis of periodic dielectric frequency-selective surfaces under plane wave excitation," IEEE Transactions on Antennas and Propagation, Vol. 60, 2760-2769, 2012.

9. Li, L. and D. H. Werner, "Design of all-dielectric frequency selective surfaces using genetic algorithms combined with the finite element-boundary integral method," 2005 IEEE Antennas and Propagation Society International Symposium, 376-379, 2005.
doi:10.1109/22.842027

10. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency-selective structures incorporating waveguide gratings," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 553-561, 2000.
doi:10.1109/8.668908

11. Zuffada, C., T. Cwik, and C. Ditchman, "Synthesis of novel all-dielectric grating filters using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 46, 657-663, 1998.
doi:10.1364/AO.45.005740

12. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.
doi:10.1364/JOSAA.20.000481

13. Fehrembach, A.-L. and A. Sentenac, "Study of waveguide grating eigenmodes for unpolarized filtering applications," JOSA A, Vol. 20, 481-488, 2003.
doi:10.1364/JOSAA.18.001261

14. Mizutani, A., H. Kikuta, K. Nakajima, and K. Iwata, "Nonpolarizing guided-mode resonant grating filter for oblique incidence," JOSA A, Vol. 18, 1261-1266, 2001.

15. Cannistra, A., M. Poutous, E. Johnson, and T. Suleski, "Fabrication of guided mode resonance filters on conformal surfaces," Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7927, 23, 2011.
doi:10.1364/OL.36.001155

16. Cannistra, A. T., M. K. Poutous, E. G. Johnson, and T. J. Suleski, "Performance of conformal guided mode resonance filters," Optics Letters, Vol. 36, 1155-1157, 2011.
doi:10.3390/mi2020150

17. Lu, M., H. Zhai, and R. Magnusson, "Focusing light with curved guided-mode resonance reflectors," Micromachines, Vol. 2, 150-156, 2011.
doi:10.1364/JOSA.62.000502

18. Berreman, D. W., "Optics in stratified and anisotropic media: 4 x 4-matrix formulation," JOSA, Vol. 62, 502-510, 1972.
doi:10.1364/JOSAA.14.003125

19. Chen, C.-J., A. Lien, and M. Nathan, "4 x 4 and 2 x 2 matrix formulations for the optics in stratified and biaxial media," JOSA A, Vol. 14, 3125-3134, 1997.
doi:10.1364/JOSA.71.000811

20. Moharam, M. and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA, Vol. 71, 811-818, 1981.
doi:10.2528/PIERB11083107

21. Rumpf, R. C., "Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention," Progress In Electromagnetics Research B, Vol. 35, 241-261, 2011.
doi:10.2528/PIERB11092006

22. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.