1. Nikishkov, G. P., "Curvature estimation for multilayer hinged structures with initial strains," Journal of Applied Physics, Vol. 94, No. 8, 5333-5336, 2003.
doi:10.1063/1.1610777 Google Scholar
2. Cory, H. and C. Zach, "Wave propagation in metamaterial multi-layered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005 Google Scholar
3. Cory, H., S. Shiran, and M. Heilper, "An iterative method for calculating the shielding effectiveness and light transmittance of multilayered media," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 4, 451-456, 1993.
doi:10.1109/15.247859 Google Scholar
4. Sihvola, A., "Electromagnetic emergence in metamaterials," Advances in Electromagnetics of Complex Media and Metamaterials, 1-17, Kluwer Academic Publishers, Dordrecht, 2003. Google Scholar
5. Liu, C. H. and N. Behdad, "Tunneling and filtering characteristics of cascaded-negative metamaterial layers sandwiched by double-positive layers," Journal of Applied Phyics, Vol. 111, 014906, 2012.
doi:10.1063/1.3673796 Google Scholar
6. Oraizi, H. and M. Afsahi, "Design of metamaterial multilayer structures as frequency selective surfaces," Progress In Electromagnetics Research C, Vol. 6, 115-126, 2009.
doi:10.2528/PIERC09010508 Google Scholar
7. Kalluri, D. K. and T. C. K. Rao, "Filter characteristics of periodic chiral layers," Pure and Applied Optics, Vol. 3, 231-234, 1994.
doi:10.1088/0963-9659/3/3/005 Google Scholar
8. Cojocaru, E., "Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials," Progress In Electromagnetics Research, Vol. 113, 227-249, 2011.
doi:10.2528/PIER11010707 Google Scholar
9. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectricchiral interface and through a chiral slab," Journal of the Optical Society of America, Vol. 5, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450 Google Scholar
10. Sabah, C., F. Dincer, M. Karaaslan, E. Unal, H. T. Tastan, and K. Delihacioglu, "Transmission tunneling through the periodic sequence of double-negative and double-positive layers," 13th Conference on Microwave Techniques, 2013. Google Scholar
11. Smirnovaa, D. A., I. V. Iorshb, I. V. Shadrivova, and Y. S. Kivshara, "Multilayer graphene waveguides," Journal of Experimental and Theorectical Physics, Vol. 99, No. 8, 456460, 2014. Google Scholar
12. Liu, C. H. and N. Behdad, "High-power microwave filters and frequency selective surfaces exploiting electromagnetic wave tunneling through ε-negative layers," Journal of Applied Phyics, Vol. 113, 064909, 2013.
doi:10.1063/1.4790584 Google Scholar
13. Sabah, C. and S. Uckun, "Mirrors with chiral slabs," Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 5, 1918-1924, 2006. Google Scholar
14. Mandelbrot, B., The Fractal Geometry of Nature, Freeman, 1982.
15. Balankin, A. S. and B. E. Elizarraraz, "Map of fluid flow in fractal porous medium into fractal continuum flow," Physical Review E, Vol. 85, 056314, 2012.
doi:10.1103/PhysRevE.85.056314 Google Scholar
16. Balankin, A. S. and B. E. Elizarraraz, "Hydrodynamics of fractal continuum flow," Physical Review E, Vol. 85, 025302, 2012.
doi:10.1103/PhysRevE.85.025302 Google Scholar
17. Sabatier, J., O. P. Agrawal, and J. A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, 2007.
18. Wang, Z.-S. and B.-W. Lu, "The scattering of electromagnetic waves in fractal media," Waves in Random and Complex Media, Vol. 4, 97-103, 1994.
doi:10.1088/0959-7174/4/1/010 Google Scholar
19. Engheta, N., "Use of fractional integration to propose some ‘fractional’ solutions for the scalar Helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996. Google Scholar
20. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, 1997.
doi:10.1109/74.632994 Google Scholar
21. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
22. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801 Google Scholar
23. Hussain, A., Q. A. Naqvi, and M. Abbas, "Fractional duality and perfect electromagnetic conductor (PEMC)," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702 Google Scholar
24. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405 Google Scholar
25. Zubair, M., M. J. Mughal, and Q. A. Naqvi, Electromagnetic Fields and Waves in Fractional Dimensional Space, 1st Ed., Springer, 2012.
doi:10.1007/978-3-642-25358-4
26. Marwat, S. K. and M. J. Mughal, "Characteristics of multilayered metamaterial structures embedded in fractional space for terahertz applications ," Progress In Electromagnetics Research, Vol. 144, 229-239, 2014.
doi:10.2528/PIER13110603 Google Scholar
27. Omar, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research M, Vol. 28, 229-244, 2013.
doi:10.2528/PIERM12121903 Google Scholar
28. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402 Google Scholar
29. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional-space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
doi:10.2528/PIERL11051105 Google Scholar