Vol. 32
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-08-14
Random Step Frequency CSAR Imaging Based on Compressive Sensing
By
Progress In Electromagnetics Research C, Vol. 32, 81-94, 2012
Abstract
Circular synthetic aperture radar (CSAR) imaging based on compressive sensing with random step frequency (RSF) as transmitted signal is introduced. CSAR is capable of obtaining both two-dimensional high resolution image and three-dimensional image due to a circular collection trajectory. RSF signal shares good characteristics of noise signals including ``thumbtack-shape" ambiguity function, low probability of interception, and strong anti-jamming capability. As a result, CSAR adopting RSF signal can make use of advantages of both CSAR and RSF signal. Compressive sensing is a new data acquisition and reconstruction theorem for sparse or compressible signals, which needs fewer samples to reconstruct signals than traditional Nyquist theorem. Simulation results show that both two-dimensional and three-dimensional targets can be well reconstructed from few samples by applying compressive sensing to RSF CSAR imaging.
Citation
Lingjuan Yu Yunhua Zhang , "Random Step Frequency CSAR Imaging Based on Compressive Sensing," Progress In Electromagnetics Research C, Vol. 32, 81-94, 2012.
doi:10.2528/PIERC12061509
http://www.jpier.org/PIERC/pier.php?paper=12061509
References

1. Soumekh, M., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, New York, 1999.

2. Bryant, M. L., L. L. Gostin, and M. Soumekh, "Three-dimensional E-CSAR imaging of a T-72 tank and synthesis of its spotlight, stripmap and interferometric SAR reconstructions," International Conference on Image Processing, 628-631, 2001.

3. Bryant, M. L., L. L. Gostin, and M. Soumekh, "3-D E-CSAR maging of a T-72 tank and synthesis of its SAR reconstructions," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 1, 211-227, 2003.
doi:10.1109/TAES.2003.1188905

4. Cantalloube, H. M. J., P. Dubois-Fernandez, and X. Dupuis, "Very high resolution SAR images over dense urban area," IEEE International Geoscience and Remote Sensing Symposium, Vol. 4, 2799-2802, 2005.

5. Cantalloube, H. and E. C. Koeniguer, "Assessment of physical limitations of high resolution on targets at X-band from circular SAR experiments," European Conference on Synthetic Aperture Radar, June 2008.

6. Oriot, H. and H. Cantalloube, "Circular SAR imagery for urban remote sensing," European Conference on Synthetic Aperture Radar, June 2008.

7. Palm, S. and H. Oriot, "DEM extraction over urban area using circular SAR imagery," European Conference on Synthetic Aperture Radar, June 2008.

8. Frölind, P.-O. U., M. H. Lars, and A. Gustavsson, "First results on VHF-band SAR imaging using circular tracks," European Conference on Synthetic Aperture Radar, June 2008.

9. Tan, W. X., et al., "Circular SAR experiment for human body imaging," Asian and Pacific Conference on Synthetic Aperture Radar, 90-93, 2007.
doi:10.1109/APSAR.2007.4418562

10. Tan, W. X., W. Hong, Y. P. Wang, and Y. R. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In lectromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER10100307

11. Axelsson, S. R. J., "Random noise radar/sodar with ultrawide-band waveforms," IEEE Transactions on Geoscience and Remote Sensing , Vol. 45, No. 5, 1099-1114, 2007.
doi:10.1109/TGRS.2007.893742

12. Axelsson, S. R. J., "Analysis of random step frequency radar and comparison with experiments," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 4, 890-904, 2007.
doi:10.1109/TGRS.2006.888865

13. Candes, E. J., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

14. Donoho, D. L., "IEEE Transactions on Information Theory,", Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

15. Candes, E. J. and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Transactions on Information Theory, Vol. 52, No. 2, 5406-5425, 2006.
doi:10.1109/TIT.2006.885507

16. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," IEEE Radar Conference, 128-133, 2007.
doi:10.1109/RADAR.2007.374203

17. Zhu, X. X. and R. Bamler, "Compressive sensing for high resolution differential SAR tomography-the SL1MMER algorithm," IEEE International Geoscience and Remote Sensing Symposium, 17-20, 2010.

18. Wei, S.-J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

19. Li, J., S. S. Zhang, and J. F. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
doi:10.2528/PIER12021307

20. Liu, Z., X. Z. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repretition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-131, 2012.

21. Lin, Y., et al., "Compressed sensing technique for circular SAR imaging," IET International Radar Conference, April 2009.

22. Chen, S. S., D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Journal on Scientific Computing, Vol. 20, No. 1, 33-61, 1998.
doi:10.1137/S1064827596304010

23. Birgin, E. G., J. M. Martínez, and M. Raydan, "Nonmonotone spectral projected gradient methods on convex sets," SIAM Journal on Optim., Vol. 10, No. 4, 1196-1211, 2000.
doi:10.1137/S1052623497330963