Vol. 109
Latest Volume
All Volumes
PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-01-26
Quasi-Static Analysis of Scattering from a Metallic Sphere Coated by Radially Anisotropic Material
By
Progress In Electromagnetics Research C, Vol. 109, 95-110, 2021
Abstract
Theoretical investigation of optical properties of a metallic sphere coated with uniform layer of anisotropic dielectric material is conducted by studying its polarizability, scattering cross section, absorption and extinction cross section. The dispersive characteristics of metal (tungsten/silver/gold) are mathematically modeled through well known Lorentz-Drude model. A detailed analysis of the behaviors of polarizability, scattering cross-section, absorption and extinction cross section is carried out for different specific values of the radius and components of the tensor permittivity. The impact of variation of different parameters on location and magnitude of the surface plasmon resonance is highlighted.
Citation
Muhammad Yousaf Iqbal Aijaz Ali Qaisar Naqvi , "Quasi-Static Analysis of Scattering from a Metallic Sphere Coated by Radially Anisotropic Material," Progress In Electromagnetics Research C, Vol. 109, 95-110, 2021.
doi:10.2528/PIERC20061903
http://www.jpier.org/PIERC/pier.php?paper=20061903
References

1. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302

2. Yoon, T.-J., K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S.-H. Yun, B.-H. Sohn, M.-H. Cho, J.- K. Lee, and S. B. Park, "Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials," Small, Vol. 2, No. 2, 209-215, 2006.
doi:10.1002/smll.200500360

3. Chen, G., et al., "(α-naybf4: Tm3+)/caf2 core/shell nanoparticles with efficient nearinfrared to near-infrared upconversion for high-contrast deep tissue bioimaging," ACS Nano, Vol. 6, No. 9, 8280-8287, 2012.
doi:10.1021/nn302972r

4. Feng, H. Y., F. Luo, D. Meneses-Rodrıguez, G. Armelles, and A. Cebollada, "From disk to ring: Aspect ratio control of the magnetoplasmonic response in Au/Co/Au nanostructures fabricated by hole-mask colloidal lithography," Applied Physics Letters, Vol. 106, No. 8, 083105, 2015.
doi:10.1063/1.4913621

5. Zayats, A. V. and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," Journal of Optics A: Pure and Applied Optics, Vol. 5, No. 4, S16, 2003.
doi:10.1088/1464-4258/5/4/353

6. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 1-11, World Scientific, 2011.

7. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nanoscience and Technology: A Collection of Reviews from Nature Journals, 308-319, World Scientific, 2010.

8. Pande, S., S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, and T. Pal, "Synthesis of normal and inverted gold-silver coreshell architectures in β-cyclodextrin and their applications in sers," The Journal of Physical Chemistry C, Vol. 111, No. 29, 10806-10813, 2007.
doi:10.1021/jp0702393

9. Kim, J., H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, and T. Hyeon, "Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery," Angewandte Chemie International Edition, Vol. 47, No. 44, 8438-8441, 2008.
doi:10.1002/anie.200802469

10. Lee, K.-S. and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," The Journal of Physical Chemistry B, Vol. 110, No. 39, 19220-19225, 2006.
doi:10.1021/jp062536y

11. Liedberg, B., C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
doi:10.1016/0250-6874(83)85036-7

12. Verbruggen, S. W., M. Keulemans, J. A. Martens, and S. Lenaerts, "Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles," The Journal of Physical Chemistry C, Vol. 117, No. 37, 19142-19145, 2013.
doi:10.1021/jp4070856

13. Ali, A., Q. A. Naqvi, and M. A. Baqir, "Investigation of the plasmon resonance of core-shell nanoparticle in the near-infrared region," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2462-2475, 2019.
doi:10.1080/09205071.2019.1685008

14. Mohapatra, S., Y. Mishra, D. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, "Synthesis of goldsilicon core-shell nanoparticles with tunable localized surface plasmon resonance," Applied Physics Letters, Vol. 92, No. 10, 103105, 2008.
doi:10.1063/1.2894187

15. Gerislioglu, B., A. Ahmadivand, and N. Pala, Optothermally controlled charge transfer plasmons in Au-Ge2Sb2Te5 core-shell assemblies, arXiv preprint arXiv:1712.01092, 2017.

16. Sukhorukov, V. L., G. Meedt, M. Kurschner, and U. Zimmermann, "A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane," Journal of Electrostatics, Vol. 50, No. 3, 191-204, 2001.
doi:10.1016/S0304-3886(00)00037-1

17. Ambjornsson, T., G. Mukhopadhyay, S. P. Apell, and M. Kall, "Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles," Physical Review B, Vol. 73, No. 8, 085412, 2006.
doi:10.1103/PhysRevB.73.085412

18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

19. Gao, L., T. Fung, K. Yu, and C. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Physical Review E, Vol. 78, No. 4, 046609, 2008.
doi:10.1103/PhysRevE.78.046609

20. Ni, Y., L. Gao, A. Miroshnichenko, and C. Qiu, "Controlling light scattering and polarization by spherical particles with radial anisotropy," Optics Express, Vol. 21, No. 7, 8091-8100, 2013.
doi:10.1364/OE.21.008091

21. Nisar, M. and Q. A. Naqvi, "Cloaking and magnifying using radial anisotropy in non-integer dimensional space," Physics Letters A, Vol. 382, No. 31, 2055-2060, 2018.
doi:10.1016/j.physleta.2018.05.018

22. Wallen, H., H. Kettunen, and A. Sihvola, "Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres," Radio Science, Vol. 50, No. 1, 18-28, 2015.
doi:10.1002/2014RS005534

23. Kettunen, H., H. Wallen, and A. Sihvola, "Cloaking and magnifying using radial anisotropy," Journal of Applied Physics, Vol. 114, No. 4, 044110, 2013.
doi:10.1063/1.4816797

24. Liu, H.-Z., J. L.-W. Li, M. S. Leong, and S. Zouhdi, "Transparent uniaxial anisotropic spherical particles designed using radial anisotropy," Physical Review E, Vol. 84, No. 1, 016605, 2011.
doi:10.1103/PhysRevE.84.016605

25. Chen, H. and L. Gao, "Tunablity of the unconventional fano resonances in coated nanowires with radial anisotropy," Optics Express, Vol. 21, No. 20, 23619-23630, 2013.
doi:10.1364/OE.21.023619

26. Reshetnyak, V. Y., I. P. Pinkevych, T. J. Sluckin, and D. R. Evans, "Cloaking by shells with radially inhomogeneous anisotropic permittivity," Optics Express, Vol. 24, No. 2, A21-A32, 2016.
doi:10.1364/OE.24.000A21

27. Sihvola, A. and I. V. Lindell, "Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 8, 741-756, 1988.

28. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, No. 1, 083097, 2014.
doi:10.1117/1.JNP.8.083097

29. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271

30. Kettunen, H., H. Wallen, and A. Sihvola, "Tailoring effective media by mie resonances of radially-anisotropic cylinders," Photonics, Vol. 2, 509-526, Multidisciplinary Digital Publishing Institute, 2015.