Vol. 4
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-09-09
A New Approach to Evaluate the Surface Waves Term for the Nonsymmetrical Components of Green's Functions in Multilayered Media
By
Progress In Electromagnetics Research M, Vol. 4, 105-116, 2008
Abstract
The discrete complex image method is one of the most prominent techniques that handle the Sommerfeld integrals encountered in the integral equation formulations of multilayered media. The extraction of surface waves extends the validity of the method to the far field. These surface waves are expressed in terms of Hankel functions that suffers a singularity problem at the origin which contaminates the results in the near field. In this work,w e use a formulation developed recently by the author to derive a new expression for the surface waves. The new expression is shown to obviate the singularity of the Hankel functions at the origin,and hence leads to accurate results in the near field.
Citation
Alaa Abdelmageed , "A New Approach to Evaluate the Surface Waves Term for the Nonsymmetrical Components of Green's Functions in Multilayered Media," Progress In Electromagnetics Research M, Vol. 4, 105-116, 2008.
doi:10.2528/PIERM08072504
http://www.jpier.org/PIERM/pier.php?paper=08072504
References

1. Michalski, K. A., "Formulation of mixed-potential integral equations for arbitrarily shaped microstrip structures with uniaxial substrates," Journal of Electromagnetic and Waves and Applications, Vol. 7, 799-817, 1993.

2. Michalski, K. A. and J. R. Mosig, "Multila yered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propagat., Vol. 45, 508-519, 1997.
doi:10.1109/8.558666

3. Fang, D. G. and J. J. Yang G. Y. Delisle, "Discrete image theory for horizontal electric dipoles in a multilayered medium," IEE Proc., Vol. 135, 297-303, 1988.

4. Yang, J. J., Y. L. Chow, and D. G. Fang, "Discrete complex images of a threedimensional dipole above and within a lossy ground," IEE Proc., Vol. 138, 319-326, 1991.

5. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles of an EM system from its transient response," IEEE Trans. Antennas Propagat., Vol. 37, 229-234, 1989.
doi:10.1109/8.18710

6. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closedform spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, 588-592, 1991.
doi:10.1109/22.75309

7. Aksun, A. K., "A robust approach for the derivation of closed-form Green's functions," IEEE Trans. Antennas Propagat., Vol. 44, 651-658, 1996.
doi:10.1109/8.481641

8. Abdelmageed, A. K., "closed-form expression of the nonsymmetrical components of Green's function for multilayered media ," Electromagn., Vol. 22, 59-70, 2002.
doi:10.1080/027263402753427664

9. Hojjat, N., S. Safavi-Naeini, and Y. L. Chow, "Numerical computation of complex image Green's functions for multilayer dielectric media: Near-field zone and the interface region," IEE Proc. Microwaves, Antennas and Propagat., Vol. 145, 449-454, 1998.
doi:10.1049/ip-map:19982255

10. Ling, F. and J. M. Jin, "Discrete complex image method for Green's functions of general multilayer media," IEEE Microw. Guided Wave Lett., Vol. 10, 400-402, 2000.
doi:10.1109/75.877225

11. Abdelmageed, A. K. and A. Mohsen, "An accurate computation of Green's functions for multilayered media in the near-field region," Microwave & Opt. Technol. Lett., Vol. 29, 130-131, 2001.
doi:10.1002/mop.1106

12. Abdelmageed, A. K. and M. S. Ibrahim, "On enhancing the accuracy of evaluating Green's functions for multilayered media in the near-field region," Prog. in Electromag. Res. M, Vol. 2, 1-14, 2008.
doi:10.2528/PIERM08022505

13. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory," IEEE Trans. Antennas Propagat., Vol. 38, 335-344, 1990.
doi:10.1109/8.52240

14. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves, 653-659, Harp er & Row, New York, 1992.

15. Abramowitz, M. and I. A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1965.