Vol. 7
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-06-11
Scattering from Perfectly Magnetic Conducting Surfaces: the Extended Theory of Boundary Diffraction Wave Approach
By
Progress In Electromagnetics Research M, Vol. 7, 123-133, 2009
Abstract
In this paper, the uniform scattered fields from a perfectly magnetic conducting (PMC) surface are studied with the extended theory of boundary diffraction wave (TBDW). The vector potential is described by considering the extended TBDW for the PMC surfaces. The extended TBDW is then applied to the problem of scattering from the PMC half plane. The total scattered fields are obtained and compared numerically with the exact solution for the same problem. The numerical results show that the solution of the extended TBDW is very close to the exact solution.
Citation
Ugur Yalcin, "Scattering from Perfectly Magnetic Conducting Surfaces: the Extended Theory of Boundary Diffraction Wave Approach," Progress In Electromagnetics Research M, Vol. 7, 123-133, 2009.
doi:10.2528/PIERM09042210
References

1. Rubinowicz, A., "Thomas Young and the theory of diffraction," Nature, Vol. 180, 162-164, 1957.
doi:10.1038/180160a0

2. Sommerfeld, A., "Matematische theorie der diffraction," Math. Ann., Vol. 47, 317-374, 1896.
doi:10.1007/BF01447273

3. Maggi, G. A., "Sulla propagazione libra e perturbata delle onde luminose in un mezzo izotropo," Ann. di Mat. IIa, Vol. 16, 21-48, 1888.
doi:10.1007/BF02420290

4. Rubinowicz, A., "Die beugungswelle in der Kirchoffschen theorie der beugungsercheinungen," Ann. Physik, Vol. 4, 257-278, 1917.
doi:10.1002/andp.19173581202

5. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part I," J. Opt. Soc. Am., Vol. 52, 615-625, 1962.
doi:10.1364/JOSA.52.000615

6. Miyamoto, K. and E. Wolf, "Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave --- Part II," J. Opt. Soc. Am., Vol. 52, 626-637, 1962.
doi:10.1364/JOSA.52.000626

7. Rubinowicz, A., "Simple derivation of the Miyamoto-Wolf formula for the vector potential associated with a solution of the Helmholtz equation," J. Opt. Soc. Am., Vol. 52, 717-718, 1962.
doi:10.1364/JOSA.52.000717

8. Rubinowicz, A., "The Miyamoto-Wolf diffraction wave," Prog. Opt., Vol. 4, 201-240, 1965.

9. Otis, G. and J. W. Y. Lit, "Edge-on diffraction of a Gaussian laser beam by a semiinfinite plane," App. Optics, Vol. 14, 1156-1160, 1975.
doi:10.1364/AO.14.001156

10. Ganci, S., "A general scalar solution for the half-plane problem," J. Modern Opt., Vol. 42, 1707-1711, 1995.
doi:10.1080/09500349514551491

11. Ganci, S., "Half-plane diffraction in a case of oblique incidence," J. Modern Opt., Vol. 43, 2543-2551, 1996.

12. Yalcin, U., "The uniform diffracted fields from an opaque half plane: The theory of the boundary diffraction wave solution," 2. Engineering and Technology Symposium, Ankara, Turkey, April 30-May 1, 2009(accepted and in national language).

13. Umul, Y. Z. and U. Yalcin, "The effect of impedance boundary conditions on the potential function of the boundary diffraction wave theory," Opt. Communications, Vol. 281, 23-27, 2008.
doi:10.1016/j.optcom.2007.09.010

14. Umul, Y. Z., "Uniform line integral representation of edge diffracted fields," J. Opt. Soc. Am., Vol. 25, 133-137, 2008.
doi:10.1364/JOSAA.25.000133

15. Tang, L., et al. "Analysis of near-field diffraction pattern of metallic probe tip with the boundary diffraction wave method," Chin. Phys. Lett., Vol. 22, 2443-2446, 2005.
doi:10.1088/0256-307X/22/9/084

16. Kumar, R., D. P. Chhachhia, and A. K. Aggarwal, "Folding mirror schlieren diffraction interferometer," App. Optics, Vol. 45, 6708-6711, 2006.
doi:10.1364/AO.45.006708

17. Kumar, R., S. K. Kaura, D. P. Chhachhia, and A. K. Aggarwal, "Direct visualization of Young's boundary diffraction wave," Opt. Communications, Vol. 276, 54-57, 2007.
doi:10.1016/j.optcom.2007.04.009

18. Yalcin, U., "Uniform scattered fields of the extended theory of boundary diffraction wave for PEC surfaces," Progress In Electromagnetics Research M, Vol. 7, 29-39, 2009.
doi:10.2528/PIERM09031201

19. Baker, B. B. and E. T. Copson, The Mathematical Theory of Huygens' Principle, Oxford at the Clarendon Press, 1949.

20. Lee, S. W. and G. A. Deschamps, "A uniform asymptotic theory of electromagnetic diffraction by a curved wedge," IEEE Trans. Antennas & Propagat., Vol. 24, 25-34, 1976.
doi:10.1109/TAP.1976.1141283

21. Lee, S. W., "Comparison of uniform asymptotic theory and Ufimtsev's theory of electromagnetic edge diffraction," IEEE Trans. Antennas & Propagat., Vol. 25, 162-170, 1977.
doi:10.1109/TAP.1977.1141559

22. Ishimaru, A., "Electromagnetic Wave Propagation, Radiation, and Scattering," Prentice-Hall, Inc., 1991.