Vol. 13
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-07-25
Covariant Constitutive Relations, Landau Damping and Non-Stationary Inhomogeneous Plasmas
By
Progress In Electromagnetics Research M, Vol. 13, 145-156, 2010
Abstract
Models of covariant linear electromagnetic constitutive relations are formulated that have wide applicability to the computation of susceptibility tensors for dispersive and inhomogeneous media. A perturbative framework is used to derive a linear constitutive relation for a globally neutral plasma enabling one to describe in this context a generalized Landau damping mechanism for non-stationary inhomogeneous plasma states.
Citation
Jonathan Gratus, and Robin W. Tucker, "Covariant Constitutive Relations, Landau Damping and Non-Stationary Inhomogeneous Plasmas," Progress In Electromagnetics Research M, Vol. 13, 145-156, 2010.
doi:10.2528/PIERM10051310
References

1. O'Sullivan, R. A. and H. Derfler, "Relativistic theory of electromagnetic susceptibility and its application to plasmas," Physical Review A, Vol. 8, No. 5, 2645-2656, 1973.
doi:10.1103/PhysRevA.8.2645

2. Beskin, V. S., A. V. Gurevich, and I. N. Istomin, "Permittivity of a weakly inhomogeneous plasma," Soviet Physics JETP, Vol. 65, 715-726, 1987.

3. Fo, R. A. C., R. S. Schneider, and L. F. Ziebell, "The dispersion relation and the dielectric tensor of inhomogeneous magnetized plasmas," Journal of Plasma Physics, Vol. 42, 165-175, 1989.
doi:10.1017/S0022377800014240

4. Obukhov, Y. N., "Electromagnetic energy and momentum in moving media," Annalen der Physik, Vol. 17, No. 9, 10, 2008.
doi:10.1002/andp.200810313

5. Itin, Y., "On light propagation in premetric electrodynamics," Journal of Physics A: Mathematical and Theoretical, Vol. 42, 475402, 2009.
doi:10.1088/1751-8113/42/47/475402

6. Lindell, I. V., "Class of electromagnetic SD media," Metamaterials, Vol. 2, No. 2-3, 54-70, 2008.
doi:10.1016/j.metmat.2008.02.001

7. Vladimirov, S. V. and D. B. Melrose, "Covariant electromagnetic forces in a time-dependent and inhomogeneous medium," Physica Scripta, Vol. 57, 298-300, 1998.
doi:10.1088/0031-8949/57/2/028

8. Melrose, D. B., "A covariant formulation of wave dispersion," Plasma Physics, Vol. 15, No. 2, 99-106, 1973.
doi:10.1088/0032-1028/15/2/002

9. Lamalle, P. U., "Kinetic theory of plasma waves-part I: Introduction," Fusion Science and Technology, Vol. 41, No. 2, SUPP, 135-140, 2002.

10. Lamalle, P. U., "Kinetic theory of plasma waves-part III: Inhomogeneous plasma," Fusion Science and Technology, Vol. 41, No. 2, SUPP, 151-154, 2002.

11. Weibel, E. S., "Spontaneously growing transverse waves in a plasma due to an anisotropic velocity distribution," Physical Review Letters, Vol. 2, No. 3, 83-84, 1959.
doi:10.1103/PhysRevLett.2.83

12. Schaefer-Rolffs, U., I. Lerche, and R. Schlickeiser, "The relativistic kinetic weibel instability: General arguments and specific illustrations," Physics of Plasmas, Vol. 13, No. 1, 012107, 2006.
doi:10.1063/1.2164812

13. Yoon, P. H., "Electromagnetic weibel instability in a fully relativistic bi-maxwellian plasma," Physics of Fluids B: Plasma Physics, Vol. 1, No. 6, 1336-1338, 1989.
doi:10.1063/1.858961

14. Brambilla, M., "The high-frequency constitutive relation of axisymmetric toroidal plasmas," Plasma Physics and Controlled Fusion, Vol. 41, 775-800, 1999.
doi:10.1088/0741-3335/41/6/307

15. Bernstein, I. B., J. M. Greene, and M. D. Kruskal, "Exact nonlinear plasma oscillations," Physical Review, Vol. 108, No. 3, 546-550, 1957.
doi:10.1103/PhysRev.108.546

16. Manfredi, G., "Long-time behavior of nonlinear Landau damping," Physical Review Letters, Vol. 79, No. 15, 2815-2818, 1997.
doi:10.1103/PhysRevLett.79.2815

17. Nicholson, D. R., Introduction to Plasma Theory, Wiley, New York, 1983.

18. Feix, M. R., P. Bertrand, and A. Ghizzo, Advances in Kinetic Theory and Computing, B. Perthame (ed.), 4581, World Scientific, Singapore, 1994.

19. Brodin, G., "Nonlinear landau damping," Physical Review Letters, Vol. 78, No. 7, 1263-1266, 1997.
doi:10.1103/PhysRevLett.78.1263

20. Petri, J. and J. G. Kirk, "Numerical solution of the linear dispersion relation," Plasma Physics and Controlled Fusion, Vol. 49, 297-308, 2007.
doi:10.1088/0741-3335/49/3/008