Vol. 93
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-23
Design of a Dual-Band Antenna System for LTE-m and LTE-MIMO by Exploiting the Characteristic Mode Theory
By
Progress In Electromagnetics Research M, Vol. 93, 11-21, 2020
Abstract
In this article, a compact dual-band antenna system for LTE-M (700-900 MHz) and LTE-2500 dedicated to mobile handsets is presented. The system consists of a dual-band Planar Inverted-F-Antenna (PIFA) for LTE-M and LTE-2500 bands where this designed PIFA is frequency reconfigurable in the LTE-M band. Additionally, another PIFA is designed to cover the LTE-2500 band to enable Multiple-Input-Multiple-Output (MIMO) communication for this band. Frequency reconfiguration between 700 MHz and 900 MHz is performed by a varactor diode biased from the RF port using a decoupling circuit to separate DC and RF signals. The compactness of the system and the good isolation between the two antennas were obtained thanks to the study of the characteristic modes of the mobile phone chassis, where the ideal positions of the antennas can be easily obtained. A prototype of our system was fabricated where good frequency reconfiguration and good MIMO performance (TARC and envelope correlation) were achieved.
Citation
Kadidiatou Diallo Aliou Diallo Ibra Dioum Samuel Ouya Jean Marc Ribero , "Design of a Dual-Band Antenna System for LTE-m and LTE-MIMO by Exploiting the Characteristic Mode Theory," Progress In Electromagnetics Research M, Vol. 93, 11-21, 2020.
doi:10.2528/PIERM20030606
http://www.jpier.org/PIERM/pier.php?paper=20030606
References

1. Evans, D., "The internet of things. How the next evolution of the internet is changing everything," Cisco White Paper, 2011.

2. IoT Alliance Australia, Spectrum available for IoT, Work Stream 4, May 11, 2016.

3. Nokia, LTE-M-Optimizing LTE for the Internet of Things, White Paper on LTE-M, 2015.

4. Barreto, A. N., et al., "5G - Wireless communications for 2020," Journal of Communication and Information Systems, Vol. 31, No. 1, 146-163, 2016.
doi:10.14209/jcis.2016.14

5. Ratasuk, R., N. Mangalvedhe, D. Bhatoolaul, and A. Ghosh, "LTE-M evolution towards 5G massive MTC," JIEEE Globecom Workshops (GC Wkshps), 1-6, Singapore, 2017.

6. Huang, C., Y. C. Jiao, Z. B. Weng, and X. Li, "A planar multiband antenna based on CRLH-TL ZOR for 4G compact mobile terminal applications," 2018 International Workshop on Antenna Technology (iWAT), 1-3, Nanjing, 2018.

7. Chen, S.-C., J.-Y. Sze, Y. Chu, and C. Fu, "Reconfigurable LTE/WWAN antenna design," 2015 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), 1-2, Hsin-Chu, Taiwan, 2015.

8. Lee, S. W. and Y. Sung, "Compact frequency reconfigurable antenna for LTE/WWAN mobile handset applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 10, 4572-4577, Oct. 2015.
doi:10.1109/TAP.2015.2456940

9. Rouissi, I., J. Floch, and H. Trabelsi, "Design of frequency reconfigurable PIFA antenna with floating ground plane," Indian Journal of Science and Technology, Vol. 11, No. 5, 1-11, Feb. 2018.
doi:10.17485/ijst/2018/v11i5/118872

10. Yang, L., B. Cheng, Y. Zhu, and Y. Li, "Compact antenna with frequency reconfigurability for GPS/LTE/WWAN mobile handset applications," International Journal of Antennas and Propagation, Vol. 2016, Article ID 3976936, 8 pages, 2016.

11. Choi, M., H. Wi, B. Mun, Y. Yoon, H. Lee, and B. Lee, "A compact frequency reconfigurable antenna for LTE mobile handset applications," International Journal of Antennas and Propagation, Vol. 2015, Article ID 764949, 10 pages, 2015.

12. Young, M. W., S. Yong, and J. T. Bernhard, "A miniaturized frequency reconfigurable antenna with single bias, dual varactor tuning," IEEE Transactions on Antennas and Propagation, Vol. 63, 946-951, Jan. 2015.
doi:10.1109/TAP.2015.2388776

13. Yu, Y., J. Xiong, H. Li, and S. He, "An electrically small frequency reconfigurable antenna with a wide tuning range," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 103-106, Feb. 2011.

14. Keh, M. N. M., O. Quevedo-Teruel, and E. Rajo-Iglesias, "Reconfigurable loaded planar inverted-F antenna using varactor diodes," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 466-468, May 2011.

15. Christina Josephine Malathi, A. and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian Journal of Science and Technology, Vol. 9, No. 35, Sep. 2016.
doi:10.17485/ijst/2016/v9i35/96704

16. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 5, 52-68, Oct. 2007.
doi:10.1109/MAP.2007.4395295

17. Garbacz, R. J., "Modal expansions for resonance scattering phenomena," Proc. IEEE, Vol. 53, No. 8, 856-864, 1965.
doi:10.1109/PROC.1965.4064

18. Antonino-Daviu, E., M. Cabedo-Fabrés, M. Ferrando-Bataller, and M. Gallo, "Design of a multimode MIMO antenna using the theory of characteristic modes," Radioengineering, Vol. 18, No. 4, 6, 2009.

19. Szini, I., A. Tatomirescu, and G. F. Pedersen, "On small terminal MIMO antennas, harmonizing characteristic modes with ground plane geometry," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1487-1497, Apr. 2015.
doi:10.1109/TAP.2015.2398111

20. Chair, R., K. M. Luk, and K. F. Lee, "Radiation efficiency analysis on small antenna by Wheeler cap method," Microwave Opt. Technology Letters, Vol. 33, No. 2, 112-113, Apr. 2002.
doi:10.1002/mop.10247

21. Chae, S. H., S. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC inWiBro MIMO array antenna," IEEE Antennas Wireless Propagation Letters, Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109

22. Sharawi, M. S., "Printed MIMO antenna systems: Performance metrics, implementations and challenges," FERMAT, Vol. 11, 2014.

23. Votis, C., G. Tatsis, and P. Kostarakis, "Envelope correlation parameter measurements in a MIMO antenna array configuration," IJCNS, Vol. 3, No. 4, 350-354, 2010.
doi:10.4236/ijcns.2010.34044