Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-28

Photonic-Crystal Substrates for Harmonic Suppression in Multi-Band Smart Devices

By Omar F. Siddiqui, Raghied Atta, Muhammad Amin, and Hattan Abutarboush
Progress In Electromagnetics Research M, Vol. 97, 35-44, 2020
doi:10.2528/PIERM20081204

Abstract

We propose photonic crystal substrates that support microstrip structures to mitigate the problem of spurious harmonics in microwave devices. The wave propagation in microwave transmission lines can be controlled by employing substrates that have modulated dielectric constant such that there exist forbidden spectral regions, which are known as bandgaps in the photonic crystal terminology. With proper selection of crystalline geometry, these bandgaps can be designed to suppress the spurious harmonics. To show the existence of bandgaps in microstrip structures, we present Bloch analysis with a bi-layered photonic crystal configuration of high and low permittivities. For a practical microstrip structure that incorporates a bi-layered photonic crystal substrate, we show suppression of spurious harmonics via circuit analysis and transmittance measurements. Furthermore, a 2.5 GHz coupled-line filter is designed on a photonic crystal substrate, and 30 dB second harmonic suppression at 5 GHz is experimentally demonstrated. With the current trend multiple device integration on single platform, the photonic crystal substrates can potentially provide the noise suppression and spurious harmonic rejection needed for microwave components occupying close proximity.

Citation


Omar F. Siddiqui, Raghied Atta, Muhammad Amin, and Hattan Abutarboush, "Photonic-Crystal Substrates for Harmonic Suppression in Multi-Band Smart Devices," Progress In Electromagnetics Research M, Vol. 97, 35-44, 2020.
doi:10.2528/PIERM20081204
http://www.jpier.org/PIERM/pier.php?paper=20081204

References


    1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059, 1987.
    doi:10.1103/PhysRevLett.58.2059

    2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486, 1987.
    doi:10.1103/PhysRevLett.58.2486

    3. Krauss, T. F., M. Richard, and S. Brand, "Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths," Nature, Vol. 383, No. 6602, 699-702, 1996.
    doi:10.1038/383699a0

    4. Meade, R., J. N. Winn, and J. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 1995.

    5. Datta, S., Classical wave propagation in periodic and random media, Ph.D. Dissertation, Iowa State University, 1994.

    6. Smith, D. R., W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
    doi:10.1103/PhysRevLett.84.4184

    7. Smith, D., J. Pendry, and M. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, 2004.
    doi:10.1126/science.1096796

    8. West, P. R., S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, No. 6, 795-808, 2010.
    doi:10.1002/lpor.200900055

    9. Wang, Z., F. Cheng, T. Winsor, and Y. Liu, "Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications," Nanotechnology, Vol. 27, No. 41, 412001, 2016.
    doi:10.1088/0957-4484/27/41/412001

    10. Shalaev, V. M., "Optical negative-index metamaterials," Nature Photonics, Vol. 1, No. 1, 41, 2007.
    doi:10.1038/nphoton.2006.49

    11. Engheta, N., "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science, Vol. 317, No. 5845, 1698-1702, 2007.
    doi:10.1126/science.1133268

    12. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," JOSA A, Vol. 17, No. 6, 1012-1020, 2000.
    doi:10.1364/JOSAA.17.001012

    13. Notomi, M., "Negative refraction in photonic crystals," Optical and Quantum Electronics, Vol. 34, No. 1, 133-143, 2002.
    doi:10.1023/A:1013300825612

    14. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
    doi:10.1109/22.798001

    15. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press Cambridge, UK, 2009.

    16. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
    doi:10.1002/0471744751

    17. Verma, R. and K. Daya, "Effect of forbidden bands of electromagnetic bandgap engineered ground plane on the response of half wave length linear microwave resonator," Journal of Applied Physics, Vol. 109, No. 8, 084505, 2011.
    doi:10.1063/1.3572257

    18. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 183-190, 2005.
    doi:10.1109/TMTT.2004.839322

    19. Liang, J. and H. D. Yang, "Microstrip patch antennas on tunable electromagnetic band-gap substrates," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1612-1617, 2009.
    doi:10.1109/TAP.2009.2019928

    20. Laso, M., M. Erro, D. Benito, M. Garde, T. Lopetegi, F. Falcone, and M. Sorolla, "Analysis and design of 1-d photonic bandgap microstrip structures using a fiber grating model," Microwave and Optical Technology Letters, Vol. 22, No. 4, 223-226, 1999.
    doi:10.1002/(SICI)1098-2760(19990820)22:4<223::AID-MOP1>3.0.CO;2-X

    21. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
    doi:10.1109/22.798009

    22. Kelly, P. K., L. J. Diaz, M. J. Piket-May, and I. Rumsey, "Scan blindness mitigation using photonic bandgap structure in phased arrays," Optical Devices and Methods for Microwave/Millimeter-Wave and Frontier Applications, Vol. 3464, 239-248, International Society for Optics and Photonics, 1998.

    23. Zhang, L., J. Castaneda, and N. G. Alexopoulos, "Scan blindness free phased array design using pbg materials," IEEE Transactions on Antennas and Propagation, Vol. 52, 2000-2007, 2004.
    doi:10.1109/TAP.2004.832516

    24. Da Silva, J. L., H. D. de Andrade, A. S. Maia, H. C. Fernandes, I. B. da Silva, A. S. Sombra, and J. P. Pereira, "Performance of microstrip patch antenna due EBG/PBG arrangements insertion," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2933-2937, 2016.
    doi:10.1002/mop.30181

    25. Brown, E., C. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," JOSA B, Vol. 10, No. 2, 404-407, 1993.
    doi:10.1364/JOSAB.10.000404

    26. Kazemi, H., J. Higgins, B. Herting, H. Xin, J. B. West, and J. Hacker, "Electromagnetic bandgap waveguide (EBG) phase shifters for low cost electronically scanned antennas (ESA)," 2007 IEEE Antennas and Propagation Society International Symposium, 4357-4360, IEEE, 2007.
    doi:10.1109/APS.2007.4396507

    27. Hill, M. J., R. W. Ziolkowski, and J. Papapolymerou, "A high-Q reconfigurable planar EBG cavity resonator," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 255-257, 2001.
    doi:10.1109/7260.928930

    28. Jizat, N. M., Z. Yusoff, S. K. A. Rahim, M. I. Sabran, and M. T. Islam, "Exploitation of the electromagnetic band gap (EBG) in 3-dB multi-layer branch-line coupler," 2015 IEEE 12th Malaysia International Conference on Communications (MICC), 264-269, 2015.
    doi:10.1109/MICC.2015.7725445

    29. Falcone, F., T. Lopetegi, and M. Sorolla, "1-d and 2-d photonic bandgap microstrip structures," Microwave and Optical Technology Letters, Vol. 22, No. 6, 411-412, 1999.
    doi:10.1002/(SICI)1098-2760(19990920)22:6<411::AID-MOP13>3.0.CO;2-U

    30. Goyal, A. K. and S. Pal, "Design analysis of bloch surface wave based sensor for haemoglobin concentration measurement," Applied Nanoscience, 2020.

    31. Wang, R., et al., "Bloch surface waves confined in one dimension with a single polymeric nanofibre," Nature Communications, Vol. 8, No. 1, 1-10, 2017.
    doi:10.1038/s41467-016-0009-6

    32. Bashiri, J., B. Rezaei, J. Barvestani, and C. Zapata-Rodrıguez, "Bloch surface waves engineering in one-dimensional photonic crystals with a chiral cap layer," JOSA B, Vol. 36, No. 8, 2106-2113, 2019.
    doi:10.1364/JOSAB.36.002106

    33. Mit photonic bands, https://mpb.readthedocs.io/en/latest/.

    34. Qian, Y., V. Radisic, and T. Itoh, "Simulation and experiment of photonic band-gap structures for microstrip circuits," Proceedings of 1997 Asia-Pacific Microwave Conference, 585-588, IEEE, 1997.
    doi:10.1109/APMC.1997.654609

    35. Mbairi, F. and H. Hesselbom, "Microwave bandstop filters using novel artificial periodic substrate electromagnetic band gap structures," IEEE Transactions on Components and Packaging Technologies, Vol. 32, 273-282, July 2009.

    36. Siddiqui, O. F. and A. S. S. Mohra, "A harmonic-suppressed microstrip antenna using a metamaterial-inspired compact shunt-capacitor loaded feedline," Progress In Electromagnetics Research C, Vol. 45, 151-162, 2013.
    doi:10.2528/PIERC13070502

    37. Ren, Y.-J., "A compact dual-frequency rectifying antenna with high-orders harmonic-rejection," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 7, 2110-2113, 2007.
    doi:10.1109/TAP.2007.900275

    38. Gyaang, R., D.-H. Lee, and J. Kim, "Analysis and design of harmonic rejection low noise amplifier with an embedded notch filter," Electronics, Vol. 9, No. 4, 596, 2020.
    doi:10.3390/electronics9040596

    39. Chou, J.-H., D.-B. Lin, K.-L. Weng, and H.-J. Li, "All polarization receiving rectenna with harmonic rejection property for wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5242-5249, 2014.
    doi:10.1109/TAP.2014.2340895

    40. Ma, Z. and G. A. Vandenbosch, "Wideband harmonic rejection filtenna for wireless power transfer," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 371-377, 2013.
    doi:10.1109/TAP.2013.2287009

    41. Brillouin, L. Wave propagation in periodic structures: Electric filters and crystal lattices, 1953.

    42. Pozar, D., Microwave Engineering, 2nd Ed., John Wiley and Sons Inc., 1998.

    43. Siddiqui, O. F., "The forward transmission matrix (FTM) method for S-parameter analysis of microwave circuits and their metamaterial counterparts," Progress In Electromagnetics Research B, Vol. 66, 123-141, 2016.
    doi:10.2528/PIERB16012101