Vol. 105
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-10-20
Compensation Effect in the Conductive Auroral Regions of the Terrestrial Atmosphere
By
Progress In Electromagnetics Research M, Vol. 105, 119-129, 2021
Abstract
Oblique incidence of small-amplitude electromagnetic wave on an anisotropic conductive collision semi-infinite turbulent plasma slab under the influence of a homogeneous magnetic field is considered. The conditions of both the ordinary and extraordinary waves' propagation along and transversal directions with respect to the external magnetic field in a homogeneous absorbing collisional magnetoplasma are obtained. Second order statistical moments of the spatial power spectrum of a scattered radiation in the polar ionosphere are calculated for the arbitrary correlation function of electron density fluctuations using the geometrical optics approximation. External magnetic field, oblique incidence of electromagnetic wave on a plasma slab, anisotropy of both ionospheric conductivity and dielectric permittivity, also elongated plasma irregularities in the auroral region of the terrestrial atmosphere are taken into account. The direction along which these asymmetric factors compensate each other is established. The conditions of the "Compensation Effect" are obtained: the spatial power spectrum not broadens, and its maximum is not displaced. Second order statistical moments of a scattered radiation: the shift of maximum and the broadening of the spatial power spectrum in the main and perpendicular planes are investigated analytically and numerically for the power law spectrum of the anisotropic ionospheric plasmonic structures using the experimental data.
Citation
George Jandieri Akira Ishimaru Nino F. Mchedlishvili , "Compensation Effect in the Conductive Auroral Regions of the Terrestrial Atmosphere," Progress In Electromagnetics Research M, Vol. 105, 119-129, 2021.
doi:10.2528/PIERM21081206
http://www.jpier.org/PIERM/pier.php?paper=21081206
References

1. Kravtsov, Yu. A., Yu. A. Feizulin, and A. G. Vinogradov, Radio Waves Propagation through the Earth's Atmosphere, Radio and Communication, Moscow, 1983 (in Russian).

2. Gershman, B. N., L. M. Erukhimov, and Yu. A. Yashin, Wave Phenomena in the Ionosphere and Cosmic Plasma, Moscow, Nauka, 1984 (in Russian).

3. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2: Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing, IEEE Press, Piscataway, New Jersey, USA, 1997.

4. Rytov, S. M., Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, Vol. 4: Waves Propagation Through Random Media, Springer, Berlin, New York, 1989.

5. Dolin, L. C. and I. M. Levin, Reference Book on the Theory of Underwater Vision, Leningrad, Gidrometeoizdat, 1991 (in Russian).

6. Gavrilenko, V. G., A. A. Semerikov, and G. V. Jandieri, "On the effect of absorption on multiple wave-scattering in a magnetized turbulent plasma," Waves Random Media, Vol. 9, 427-440, 1999.
doi:10.1088/0959-7174/9/3/310

7. Aistov, A. V., V. G. Gavrilenko, and G. V. Jandieri, "On the influence of magnetic field on the angular power spectrum of electromagnetic wave multiply scattered in the turbulent collision magnetized plasma," Izv. Vyssh. Uchebn. Zaved., Radiofiz., Vol. 42, 1165-1171, 1999 (in Russian).

8. Jandieri, G. V., G. D. Aburjania, and V. G. Jandieri, "Transformation of the spectrum of scattered radiation in randomly inhomogeneous absorptive plasma layer," Wave Propagation, Scattering and Emission in Complex Media, 207-214, Ya-Qiu Jin, Science Press (Beijing, China), World Scientific (Singapore City, Singapore), 2004.

9. Jandieri, G. V., V. G. Gavrilenko, A. V. Sorokin, and V. G. Jandieri, "Some peculiarities of the angular power distribution of electromagnetic waves multiply scattered in a collisional magnetized turbulent plasma," Plasma Physics Report, Vol. 31, 604-615, 2005.
doi:10.1134/1.1992588

10. Jandieri, G. and A. Ishimaru, "Polarimetric parameters of scattered electromagnetic waves in the conductive magnetized plasma," Progress In Electromagnetics Research M, Vol. 101, 185-196, 2021.
doi:10.2528/PIERM21021904

11. Jandieri, G., A. Ishimaru, V. Jandieri, A. Khantadze, and Zh. Diasamidze, "Model computations of angular power spectra for anisotropic absorptive turbulent magnetized plasma," Progress In Electromagnetics Research, Vol. 70, 307-328, 2007.
doi:10.2528/PIER07013103

12. Ginzburg, V. L., Propagation of Electromagnetic Waves in Plasma, Gordon and Beach, New York, 1961.

13. Rishbeth, H. and Garriott, Introduction to Ionospheric Physics, Academic Press, New York, London, 1969.

14. Booker, H. G., Cold Plasma Waves, Martinus Nijhoff Publishers, Dordrecht/Boston/Lancaster, 1984.
doi:10.1007/978-94-009-6170-8

15. Jandieri, G. V., V. G. Jandieri, I. N. Jabnidze, and I. G. Takidze, "Statistical characteristics of scattered microwaves in gyrotropic medium with random inhomogeneities," International Journal of Microwave and Optical Technology, Vol. 1, 860-869, 2006.

16. Raizada, S. and H. S. S. Sinha, "Some new features of electron density irregularities over SHAR during strong spread," Ann. Geophysicae, Vol. 18, 141-151, 2000.
doi:10.1007/s00585-000-0141-8

17. Horvath, S. A., G. H. Gregory, and A. J. McCubbin, "Electron Landau damping of kinetic Alfvén waves in simulated magnetosheath turbulence," Physics of Plasma, Vol. 27, 102901, 2020.
doi:10.1063/5.0021727

18. Arshad, K., M. Lazar, S. Mahmood, A. Rehman, and S. Poedts, "Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas," Physics of Plasma, Vol. 24, 033701, 2017.
doi:10.1063/1.4977446

19. Prakash, S. S., S. Pal, and H. Chandra, "In-situ studies of equatorial spread F over SHAR-steep gradients in the bottomside F-region and transitional wavelength results," J. Atmos. Terr. Phys., Vol. 53, 977-986, 1991.
doi:10.1016/0021-9169(91)90009-V

20. Mitiakov, N. A., V. A. Alimov, V. A. Zinchev, G. P. Komrakov, and S. N. Mitiakov, "Investigation of small-scale turbulence in the F-layer of the ionosphere by back scattered method of short radio waves," Izv. Vyssh. Uchebn. Zaved., Radiofiz., Vol. 53, 329-337, 2010 (in Russian).

21. Tereschenko, E. D., B. Z. Khudukon, M. T. Rietveld, and A. Brekke, "Spatial structure of auroral day-time ionospheric electron density irregularities generated by a powerful HF-wave," Ann. Gephysicae, Vol. 16, 812-820, 1998.
doi:10.1007/s00585-998-0812-4

22. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover, 1972.