Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-10-27
All-Optical Tunable Mirror Design Using Electromagnetically Induced Transparency
By
Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008
Abstract
A new and efficient proposal for all-optical tunable devices and systems using electromagnetically induced transparency (EIT) is proposed. For this purpose a slab doped with quantum dots for realization of three-level atomic system is considered. Density matrix formulation for evaluation of the proposed structure is used. The reflection and transmission coefficients of the considered slab are calculated and the related amplitude and phase quantities studied versus parameters of the structure. We show that some nanometer tuning with application of the control field is obtained. So, the proposed idea can open a new realization method of all-optical tunable devices and systems towards all-optical systems.
Citation
Karim Abbasian, Ali Rostami, and Zia Koozekanani, "All-Optical Tunable Mirror Design Using Electromagnetically Induced Transparency," Progress In Electromagnetics Research M, Vol. 5, 25-41, 2008.
doi:10.2528/PIERM08072602
References

1. Rostami, A. and K. Abbasian, "All-optical filter design: Electromagnetically induced transparency and ring resonator," Proceeding of MICC-ICT'2007, Malaysia, 2007.

2. Zhu, K.-D. and W. S. Li, "Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well," J. Phys. B: At. Mol. Opt. Phys., Vol. 34, L679-L686, 2001.
doi:10.1088/0953-4075/34/21/102

3. Harris, S. E. and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett., Vol. 82, 4611, 1999.
doi:10.1103/PhysRevLett.82.4611

4. Harris, S. E., "Electromagnetically induced transparency," Physics Today, Vol. 36, No. 42, July 1994.

5. Agrawal, G. P., Nonlinear Fiber Optics, Academic Press, 2001.

6. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozehkanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201

7. Scully, M. O. and M. S. Zubairy, Quantum Optics, Cambridge University Press, 2001.

8. Petrosyan, D. and Y. P. Malakyan, "Electromagnetically induced transparency in a thin film," IEEE, 2000.

9. Kasapi, A., M. Jain, G. Y. Yin, S. E. Harris, and , "Electromagnetically induced transparency: Propagation dynamics," Phys. Rev. Lett., Vol. 74, 2447, 1995.
doi:10.1103/PhysRevLett.74.2447

10. Fleischhauer, M., "Electromagnetically induced transparency and coherent-state preparation in optically thick media," Optics Express 107, Vol. 4, No. 2, January 1999.

11. Kimberg, V., Pulse propagation in photonic crystals and nonlinear media, Master Thesis, Royal Institute of Technology, Stockholm, Sweden, 2005.

12. Slavcheva, G., J. M. Arnold, and R. W. Ziolkowski, "Ultrashort pulse lossless propagation through a degenerate three-level medium in nonlinear optical waveguides and semiconductor microcavities," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 3, 929-939, May/June 2003.
doi:10.1109/JSTQE.2003.818844

13. Grigoryan, G. G. and Y. T. Pashayan, "Propagation of pulses in a three-level medium at exact twophoton resonance," Physical Review A, Vol. 64, 013816, June 2001.
doi:10.1103/PhysRevA.64.013816

14. Arkhipkin, V. G. and I. V. Timofeev, "Long distance propagation of resonant pulses under conditions of induced transparency," IEEE, 2000.

15. Wang, N. and H. Rabitz, "Optimal control of optical pulse propagation in a medium of three-level systems," Physical Review A, Vol. 52, No. 1, July 1995.
doi:10.1103/PhysRevA.52.216

16. Stomeo, T., M. T. Todaro, G. Visimberga, V. Vitale, A. Passaseo, R. Cingolani, M. DeVittorio, A. D'Orazio, M. De Sario, V. Marrocco, V. Petruzzelli, F. Prudenzano, S. Cabrini, and E. Di Fabrizio, "Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications," Microelectronic Engineering, Vol. 73-74, 377-382, 2004.
doi:10.1016/S0167-9317(04)00131-5

17. Linnik, M. and A. Christou, "Effects of Bragg mirror interface grading and layer thickness variations on VCSEL performance at 1.55 mm ," Department of Materials and Nuclear Engineering and Center for OptoElectronic Devices.

18. Gross, B., N. Papageorgiou, V. Sautenkov, and A. Weis, "Velocity selective optical pumping and dark resonance in selective reflection spectroscopy," Physical Review A, Vol. 55, 2973.

19. Rostami, A., H. Rasooli, and H. Baghban, "Proposal for ultra high performance infrared quantum dot," Optics Express, Vol. 16, No. 4, 2008.
doi:10.1364/OE.16.002752

20. Rostami, A., H. Baghban, and H. Rasooli, "Highly-enhanced second-order nonlinear susceptibility in tailored GaN-AlGaN-AlN quantum well structures," Accepted for publication in Physica B, 2008.

21. Rostami, A., H. Rasooli, and H. Baghban, "Enhancement of absorption coefficient and electroabsorption in GaN/AlGaN centered defect quantum box (CDQB) nanocrystal," Accepted for publication in Physica B, 2008.

22. Yadipour, R., K. Abbasian, A. Rostami, and Z. D. Koozehkanani, "A novel proposal for ultra-high resolution and compact optical displacement sensor based on electromagnetically induced transparency in ring resonator," Progress In Electromagnetics Research, Vol. 77, 149-170, 2007.
doi:10.2528/PIER07081201

23. Dai, X.-W., M. Yao, X.-J. Dang, and C.-H. Liang, "Transparency of a pair of epsilon-negative slab and mu-negative slab," Progress In Electromagnetics Research, Vol. 69, 237-246, 2007.
doi:10.2528/PIER06120803

24. Zhang, Y., J. Pulliainen, S. Koponen, and M. Hallikainen, "A semi-empirical algorithm of water transparency at the Green wavelength band of optical remote sensing," Progress In Electromagnetics Research, Vol. 37, 191-203, 2002.
doi:10.2528/PIER02031506