Vol. 5
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2008-10-31
Verification of Shadow Region Effect on Radar Cross Section of Targets Using Physical Optics Method
By
Progress In Electromagnetics Research M, Vol. 5, 81-89, 2008
Abstract
Our method that uses current generator operator assumes the current on the entire surface of conducting scatterers. While, Physical Optics (PO) method assumes that the surface current generates only on the illumination region. The effect of the shadow region on the scattering waves is, therefore, proved by comparing our exact method with PO method. In this regard, radar cross-section (RCS) is calculated for smooth concave-convex contour. We work on numerical calculation of the RCS and analyze its characteristics with different target configurations including complexity and size. Concave illumination region is postulated with considering targets are taking large sizes of about five wavelengths. Here, we assume waves propagation and scattering from targets in free space and horizontal polarization (E-wave incidence).
Citation
Hosam El-Ocla, and Mitsuo Tateiba, "Verification of Shadow Region Effect on Radar Cross Section of Targets Using Physical Optics Method," Progress In Electromagnetics Research M, Vol. 5, 81-89, 2008.
doi:10.2528/PIERM08100601
References

1. Paddison, F. C., C. A. Shipley, A. L. Maffett, and M. H. Dawson, "Radar cross section of ships," IEEE Trans. on Aerospace and Electronic Systems, Vol. AES-14, No. 1, 1978.
doi:10.1109/TAES.1978.308574

2. Jones, R. K. and T. H. Shumpert, "Surface currents and RCS of a spherical shell with a circular aperture," IEEE Trans. Antennas Propagat., Vol. AP-28, No. 1, 128-132, 1980.
doi:10.1109/TAP.1980.1142288

3. Li, Y.-L., J.-Y. Huang, and M.-J. Wang, "Investigation of electromagnetic complex scattering for conductor target based on electromagnetic images method," Progress In Electromagnetics Research, Vol. 81, 343-357, 2008.
doi:10.2528/PIER08012402

4. Cendes, Z. J. and P. Silvester, "Numerical solution of dielectric loaded waveguides: I. Finite-element analysis," IEEE Trans. on Microwave Theory and Techniques, Vol. 18, 1124-1131, 1970.
doi:10.1109/TMTT.1970.1127422

5. Rao, S. M., D. R. Willton, and A. W. Glission, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. on Antennas and Propagation, Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

6. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, 1992.
doi:10.1109/8.144597

7. El-Ocla, H. and M. Tateiba, "Backscattering enhancement for partially convex targets of large sizes in continuous random media for E-wave incidence," Waves in Random Media, Vol. 12, No. 3, 387-397, 2002.
doi:10.1088/0959-7174/12/3/309

8. El-Ocla, H., "Backscattering from conducting targets in continuous random media for circular polarization," Waves in Random and Complex Media, Vol. 15, No. 1, 91-99, 2005.
doi:10.1080/17455030500052361

9. El-Ocla, H., "Laser backscattered from conducting targets of large sizes in continuous random media for E-wave polarization," Journal of the Optical Society of America A, Vol. 23, No. 8, 1908-1913, 2006.
doi:10.1364/JOSAA.23.001908

10. El-Ocla, H., "Backscattering enhancement analysis for targets in continuous random media based on wave polarization," Waves in Random and Complex Media, Vol. 18, No. 1, 13-25, 2008.
doi:10.1080/17455030701320310

11. Kerker, M., The Scattering of Light and Other Electromagnetic Radiation, Academic Press, 1969.

12. Howell, N. A. and G. S. Tsiang, "Computerized ray optics method of calculating average value radar cross section," IEEE Trans. Antennas Propagat., Vol. AP-16, No. 5, 569-572, 1968.
doi:10.1109/TAP.1968.1139233

13. Meng, Z. Q. and M. Tateiba, "Radar cross sections of conducting elliptic cylinders embedded in strong continuous random media," Waves in Random Media, Vol. 6, 335-45, 1996.
doi:10.1088/0959-7174/6/4/002

14. Ikuno, H. and L. B. Felsen, "Complex ray interpretation of reflection from concave-convex surface," IEEE Trans. Antennas Propagat., Vol. 36, No. 9, 1260-1271, 1988.
doi:10.1109/8.8605

15. Ikuno, H. and L. B. Felsen, "Complex rays in transient scattering from smooth targets with inflection points," IEEE Trans. Antennas Propagat., Vol. 36, No. 9, 1272-1280, 1988.
doi:10.1109/8.8606

16. Crabtree, G. D., "A numerical quadrature technique for physical optics scattering analysis," IEEE Trans. on Magnetics, Vol. 27, No. 5, 4201-4294, 1991.
doi:10.1109/20.105050

17. Gordon, W. B., "High frequency approximations to the physical optics scattering integral," IEEE Trans. Antennas Propagat., Vol. 42, No. 3, 427-433, 1994.
doi:10.1109/8.280733

18. Obelleiro-Basteiro, F., J. L. Rodriguez, and R. J. Burkholder, "An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities," IEEE Trans. Antennas Propagat., Vol. 43, No. 4, 356-361, 1995.
doi:10.1109/8.376032

19. Saeedfar, A. and K. Barkeshli, "Shape reconstruction of three-dimensional conducting curved plates using physical optics, NURBS modeling, and genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 54, No. 9, 2006.
doi:10.1109/TAP.2006.880662

20. Adachi, S., "The nose-on echo area of axially symmetric thin bodies having sharp apices,", Ohio State Univ., Columbus, OH, Res. Foundation, Rep. 951-I, AD240851, Mar. 1960. (Also, Proc. IEEE, Vol. 53, 1067-1068, Aug. 1965.).

21. Adachi, S., A. Ohashi, and T. Uno, "Iterative radar target imaging based on modified extended physical optics method," IEEE Trans. Antennas Propagat., Vol. 38, No. 6, 847-852, 1990.
doi:10.1109/8.55581

22. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

23. Blore, W. E., "The radar cross section bf ogives, double-backed cones, double-rounded cones and cone spheres," IEEE Trans. Antennas Propagat., Vol. AP-12, No. 9, 582-590, 1964.
doi:10.1109/TAP.1964.1138268

24. De Wolf, A., "Radar reflectivity of metallic bodies of revolution," IEEE Trans. Antennas Propagat., Vol. AP-17, No. 9, 665-667, 1969.
doi:10.1109/TAP.1969.1139485

25. Falconer, D., "Extrapolation of near-field RCS measurements to the far zone," IEEE Trans. Antennas Propagat., Vol. 36, No. 6, 822-829, 1988.
doi:10.1109/8.1184