Vol. 14
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-09-24
Analysis of Epsilon-Near-Zero Metamaterial Super-Tunneling Using Cascaded Ultra-Narrow Waveguide Channels
By
Progress In Electromagnetics Research M, Vol. 14, 113-121, 2010
Abstract
The Epsilon-Near-Zero (ENZ) super-tunneling structure with weakly coupled cascaded ultra-narrow channels is proposed and demonstrated to have notably wider bandwidth than single stage tunneling structure. An extensive parametric study for such structures is performed to investigate the factors which can affect super-tunneling performance. It is found that the coupling between the ultra-narrow channels is required to be weak enough to ensure a continuous supertunneling band. In addition, electric field in the cascaded channels is enhanced, compared with that in the single channel structure.
Citation
Jian Bai, Shouyuan Shi, and Dennis W. Prather, "Analysis of Epsilon-Near-Zero Metamaterial Super-Tunneling Using Cascaded Ultra-Narrow Waveguide Channels," Progress In Electromagnetics Research M, Vol. 14, 113-121, 2010.
doi:10.2528/PIERM10080205
References

1. Marques, R., F. Martin, and M. Sorolla, Metamaterials With Negative Parameters: Theory, Design and Microwave Applications, Wiley Series in Microwave and Optical Engineering, 2008.

2. Weng, Z. B., X. M. Wang, and Y. Song, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Wave and Applications, Vol. 23, No. 13, 1763-1772, 2009.
doi:10.1163/156939309789566879

3. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Theory and simulations of a conformal omnidirectional sub-wavelength metamaterial leaky-wave antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 6, Pt.2, 1698-1708, Jun. 2007.
doi:10.1109/TAP.2007.898615

4. Pacheco, J., T. Gregorczyk, B. I. Wu, and J. A. Kong, "A wideband directive antenna using metamaterials," PIERS , 479, Honolulu, HI, Oct. 13--16, 2003.

5. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, Apr. 11, 2007.

6. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289

7. Rotman, W., "Plasma simulation by artificial dielectrics and parallel-plate media," IRE Trans. Antennas Propag., Vol. 22, 82-84, 1962.
doi:10.1109/TAP.1962.1137809

8. Silveirinha, M. and N. Engheta, "Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using epsilon near-zero metamaterials," Phys. Rev. B, Vol. 76, 245109, 2007.
doi:10.1103/PhysRevB.76.245109

9. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, 023903, 2008.
doi:10.1103/PhysRevLett.100.023903

10. Alu, A. and N. Engheta, "Dielectric sensing in ε-near-zero narrow waveguide channels," Phy. Rev. B, Vol. 78, 045102, Jul. 3, 2008.

12. Alu, A., M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of ε-near-zero (ENZ)-filled narrow channels," Phy. Rev. E, Vol. 78, 016604, Jul. 23, 2008.

13. Alu, A. and N. Engheta, "Coaxial-to-waveguide matching with ε-near-zero ultranarrow channels and bends," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 328-339, Feb. 2010.
doi:10.1109/TAP.2009.2037714