1. Fante, R. L. and M. T. McCormack, "Reflection properties of the salisbury screen," IEEE Trans. Antennas and Propagat., Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632 Google Scholar
2. Tennant, A. and B. Chamber, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, 2004.
doi:10.1109/LMWC.2003.820639 Google Scholar
3. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics ," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
4. John, S., "Strong localization of photons in certain disorded dielectric superlattices ," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
5. Johnson, S. G. and J. D. Joannopuulos, Photonic Crystals: The Road from Theory to Practice, Kluwer Academic Publishers, Norwell, 2002.
6. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
7. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative refractive index of refraction," Science, Vol. 292, 77-79, Apr. 2002. Google Scholar
8. Yang, F. R., K. P. Ma, and T. Itoh, "A uniplanar compact photonic band-gap (UC-PBG) structrue and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402 Google Scholar
9. Sieverpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, Nov. 1999. Google Scholar
10. Li, L., Q. Chen, Q. W. Yuan, C. H. Liang, and K. Sawaya, "Surface-wave suppression band gap and plane-wave reflection phase band of mushroomlike photonic band gap structures," Journal of Applied Physics, Vol. 103-023513, Jan. 2008.
doi:10.1063/1.2903454 Google Scholar
11. Yang, F. and Y. Rahmat-Samii, "Refltion phase characteriza tions of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propagat., Vol. 51, 2691-2703, Oct. 2003. Google Scholar
12. Li, L., C. H. Liang, and C.-H. Chan, "Waveguide end-slot phased array antenna integrated with electromagnetic bandgap structure," Journal of Electromagnetic Waves and Application, Vol. 21, No. 2, 161-174, 2007.
doi:10.1163/156939307779378826 Google Scholar
13. Seman, F. C., R. Cahill, V. F. Fusco, and G. Goussetis, "Design of a Salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance ," IET Microw. Antennas Propag., Vol. 5, No. 2, 149-156, 2011.
doi:10.1049/iet-map.2010.0072 Google Scholar
14. Yao, B., L. Li, and C. H. Liang, "An improved design of absorbing structure with Jerusalem cross slot," The 9th International Symposium on Antennas, Propagation, and EM Theory, Guangzhou , China, Nov. 29-Dec. 2, 2010. Google Scholar
15. Engheta, N., "Thin absorbing screens using metamaterial surfaces," IEEE-APS International Symposium, San Antonio, Texas, Jun. 16-21, 2002. Google Scholar
16. Kern, D. and D. Werner, "A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers," Microwave Opt. Tech. Lett., Vol. 38, No. 1, 61-64, Jul. 2003.
doi:10.1002/mop.10971 Google Scholar
17. Gao, Q., Y. Yin, D. B. Yan, and N. C. Yuan, "Application of metamaterials to ultra-thin radar-absorbing material design," Electronics Letters, Vol. 14, No. 17, 1311-1313, 2005. Google Scholar
18. Kazemzadeh, A. and A. Karlsson, "On the absorption mechanism of ultra thin absorbers," IEEE Trans. Antennas and Propagat., Vol. 58, No. 10, 3310-3315, 2010.
doi:10.1109/TAP.2010.2055779 Google Scholar
19. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Trans. Antennas and Propagat., Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329 Google Scholar
20. Luukkonen, O., F. Costa, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas and Propagat., Vol. 57, No. 10, 3119-3125, Oct. 2009.
doi:10.1109/TAP.2009.2028601 Google Scholar
21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle ," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
22. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
23. Munir, A. and V. Fusco, "Effect of surface resistor loading on high-impedance surface radar absorber return loss and bandwidth," Microwave and Optical Technology Letters, Vol. 51, No. 7, 1773-1775, 2009.
doi:10.1002/mop.24454 Google Scholar
24. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Trans. Antennas and Propagat., Vol. 48, No. 8, 1230-1234, 2000.
doi:10.1109/8.884491 Google Scholar
25. High Frequency Structure Simulator, , Ansys Corporation.