Vol. 19
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-03
Analysis on Transmission Efficiency of Wireless Energy Transmission Resonator Based on Magnetic Resonance
By
Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011
Abstract
In this paper, a high-efficiency wireless energy transmission via magnetic resonance is experimentally implemented in a resonator with the various sizes of transmitting and receiving coils and the receiving coil having two shapes of rectangular and circular types. The transmission efficiency is analyzed by varying the transmission distance. The resonance between the transmitting and receiving coils is achieved with lumped capacitors terminating the coils. The transmission efficiency of the resonator consisting of a circular transmitting coil with a diameter of 60 cm and rectangular receiving coil with a one side length of 10 cm is about 80% at the transmission distance of 20 cm. The transmission efficiencies of the wireless energy transmission resonator consisting of a receiving coil with the size of iPhone4 are about 75% and 40% at the transmission distances of 20 cm and 50 cm.
Citation
Jaewon Choi, and Chulhun H. Seo, "Analysis on Transmission Efficiency of Wireless Energy Transmission Resonator Based on Magnetic Resonance," Progress In Electromagnetics Research M, Vol. 19, 221-237, 2011.
doi:10.2528/PIERM11050903
References

1. Choi, J. and C. Seo, "High-effciency wireless energy transmission using magnetic resonance based on metamaterial with relative permeability equal to -1," Progress In Electromagnetics Research, Vol. 106, 33-47, 2010.
doi:10.2528/PIER10050609

2. Miranda, J. O. M., G. Fanti, Y. Feng, K. Omanakuttan, R. Ongie, A. Setjoadi, and N. Sharpe, "Wireless power transfer using weakly coupled magnetostatic resonators," IEEE Energy Conversion Congress and Exposition, 4179-4186, 2010.
doi:10.1109/ECCE.2010.5617728

3. Karalis, A., J. D. Joannopoulos, and M. Soljacic, "Effcient wireless non-radiative mid-range energy transfer," Annals of Physics, Vol. 323, No. 1, 34-48, 2008.
doi:10.1016/j.aop.2007.04.017

4. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonance," Science, Vol. 317, No. 6, 83-86, 2007.
doi:10.1126/science.1143254

5. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, 2009.
doi:10.1109/TPEL.2009.2017195

6. Yuan, Q., Q. Chen, L. Li, and K. Sawaya, "Numerical analysis on transmission e±ciency of evanescent resonant coupling wireless power transfer system," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1751-1758, 2010.
doi:10.1109/TAP.2010.2044321