Vol. 24
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-09
Resonant Transmission through a Pair of Ridge-Loaded Circular Sub-Wavelength Apertures
By
Progress In Electromagnetics Research M, Vol. 24, 113-126, 2012
Abstract
This paper deals with resonant transmission through a pair of ridge-loaded circular sub-wavelength apertures in an infinite perfect electric conductor (PEC) plane. The effect of the distance between the two resonant circular sub-wavelength apertures allocated along the ridge direction (``parallel'' case) and perpendicular to the ridge direction (``collinear'' case) on the transmission cross section (TCS) is analyzed numerically by using a method of moments (MoM). It is found that the TCS for the parallel case varies more sensitively to the distance than that for the collinearly located case, and the maximum TCS for the parallel case is tripled compared to the TCS value of a single resonant aperture. For the case of maximum TCS in the parallel configuration, the directivity in the broadside direction is about 8.76 times (=9.43 dB) compared to that for the single resonant aperture. For the purpose of validation, the single resonant aperture and a pair of resonant apertures in the parallel configuration with a distance for maximum TCS are fabricated on a stainless steel plate with 0.3 mm thickness, and their transmission characteristics are measured. Experimental results show that the transmittance, which is a transmitted power density measured at 50 cm away from the aperture plane, for the parallel resonant apertures is about 7 times (=8.43 dB) higher than that for the single aperture, which agrees well with the simulation.
Citation
Jong-Ig Lee, Young-Ki Cho, Ji-Hwan Ko, and Junho Yeo, "Resonant Transmission through a Pair of Ridge-Loaded Circular Sub-Wavelength Apertures," Progress In Electromagnetics Research M, Vol. 24, 113-126, 2012.
doi:10.2528/PIERM12021907
References

1. Bethe, H. A., "Theory of diffraction by small holes," Phys. Revs., Vol. 66, 163-182, 1944.
doi:10.1103/PhysRev.66.163

2. Shi, X., L. Hesselink, and R. L. Thornton, "Ultrahigh light transmission through a C-shaped nanoaperture," Optics Letters, Vol. 28, No. 15, 1320-1322, 2003.
doi:10.1364/OL.28.001320

3. Sun, M., R. Liu, Z. Li, B. Cheng, D. Zhang, H. Yang, and A. Jin, "Enhanced near-infrared transmission through periodic H-shaped arrays," Physics Letters A, Vol. 365, 510-513, 2007.
doi:10.1016/j.physleta.2007.01.033

4. Yeo, J., J. W. Ko, J. E. Park, and Y. K. Cho, "FDTD analysis of resonant transmission in an electrically small circular aperture with a ridge," Proceedings of IEEE Antennas and Propagation Society International Symposium, 1-4, 2008.

5. Ko, J. W., J. Yeo, J. E Park, S. Y. Choi, and Y. K. Cho, "Resonant transmission of a class of sub-wavelength apertures in thin conducting screen," Proceedings of Asia-Pacific Microwave Conference, 1-4, 2008.

6. Park, J. E., J. Yeo, J. I. Lee, J. W. Ko, and Y. K. Cho, "Resonant transmission of an electrically small aperture with a ridge," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1981-1990, 2009.
doi:10.1163/156939309789932502

7. Harrington, R. F., "Resonant behavior of a small aperture backed by a conducting body," IEEE Trans. Antennas Propagat., Vol. 30, No. 2, 205-212, 1982.
doi:10.1109/TAP.1982.1142761

8. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on Mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.

9. Lockyear, M. J., A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a single subwave-length aperture surrounded by concentric grooves," Journal of Optics A, Vol. 7, S152-S158, 2005.
doi:10.1088/1464-4258/7/2/020

10. Akarca-Biyikli, S. S., I. Bulu, and E. Ozbay, "Resonant excitation of surface plasmons in one-dimensional metallic grating structures at microwave frequencies," Journal of Optics A, Vol. 7, S159-S164, 2005.
doi:10.1088/1464-4258/7/2/021

11. Caglayan, H., I. Bulu, and E. Ozbay, "Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture," Optics Express, Vol. 13, No. 5, 1666-1671, 2005.
doi:10.1364/OPEX.13.001666

12. Bilotti, F., L. Scorrano, E. Ozbay, and L. Vegni, "Enhanced transmission through a sub-wavelength aperture: Resonant approaches employing metamaterials," ournal of Optics A, Vol. 11, 114029, 2009.

13. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

14. Yu, W. and R. Mittra, CFDTD: Conformal Finite Difference Time Domain Maxwell's Equations Solver, Software and User's Guide, Artech House, 2003.

15. Carter, P. S., "Circuit relations in radiating systems and applications to antenna problems," Proc. of the IRE, Vol. 20, No. 6, 1004-1041, 1932.
doi:10.1109/JRPROC.1932.227723

16. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 1997.

17. Cho, Y. K., K. W. Kim, J. H. Ko, and J. I. Lee, "Transmission through a narrow slot in a thick conducting screen," IEEE Trans. Antennas Propagat., Vol. 57, No. 3, 813-816, 2009.
doi:10.1109/TAP.2009.2013450