Vol. 24
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-04-09
A Simple Technique for Optimizing the Implementation of the Aperture Theorem Based on Equivalence Principle
By
Progress In Electromagnetics Research M, Vol. 24, 97-111, 2012
Abstract
The electromagnetic characteristics of the aperture located on a PEC (Perfect Electric Conductor) cavity is an important and challenged research in CEM(Computational Electromagnetics) and practical applications. Researches have been done well when the aperture locates on a large flat surface. But the complex slots and apertures are still difficult to analyze, such as a thin long slot. Thin long slots present on different kinds of the structures, such as missiles, aircrafts, handset equipments, and computers. And, most of the surfaces are non-flat. Furthermore, the multiscale characteristic of the structure makes the modeling very difficult in such cases. It becomes an increasing interested research recently. A better result can be obtained by generating much more denser meshes. Because of the complexity of the algorithm and ill-posed matrix problem, It is not an optimized option. In order to get a better use of the aperture theorem in the multiscale problems, a separation technique is developed in this paper. By using readjustment of the equivalence electric and magnetic currents, a simplified model is proposed. Arbitrary shaped aperture can be very well handled through this method, especially the thin long slots.
Citation
Sihai Qiu, Ying-Hua Lu, Ning Liu, and Peng Li, "A Simple Technique for Optimizing the Implementation of the Aperture Theorem Based on Equivalence Principle," Progress In Electromagnetics Research M, Vol. 24, 97-111, 2012.
doi:10.2528/PIERM12022009
References

1. Harrington, R. and J. Mautz, "A generalized network formulation for aperture problems," IEEE Trans. Antennas Propag., Vol. 24,=, 870-873, Nov. 1976.

2. Auckland, D. T. and R. F. Harrington, "Electromagnetic transmission through a filled slit in a conducting plane of finite thickness, TE case," IEEE Trans. Microwave Theory and Techniques, Vol. 26, 499-505, Jul. 1978.
doi:10.1109/TMTT.1978.1129422

3. Liang, C.-H. and D. Cheng, "Electromagnetic fields coupled into a cavity with a slot-aperture under resonant conditions," IEEE Trans. Antennas Propag., Vol. 30, 664-672, Jul. 1982..
doi:10.1109/TAP.1982.1142881

4. Harrington, R., "Resonant behavior of a small aperture backed by a conducting body," IEEE Trans. Antennas Propag., Vol. 30, 205-212, Mar. 1982.
doi:10.1109/TAP.1982.1142761

5. Harrington, R. and D. Auckland, "Electromagnetic transmission through narrow slots in thick conducting screens," IEEE Trans. Antennas Propag., Vol. 28, 616-622, Sep. 1980.
doi:10.1109/TAP.1980.1142382

6. Hsi, S., R. Harrington, and J. Mautz, "Electromagnetic coupling to a conducting wire behind an aperture of arbitrary size and shape," IEEE Trans. Antennas Propag., Vol. 33, 581-587, Jun. 1985.
doi:10.1109/TAP.1985.1143628

7. Umashankar, K., A. Taflove, and B. Beker, "Calculation and experimental validation of induced currents on coupled wires in an arbitrary shaped cavity," IEEE Trans. Antennas Propag., Vol. 35, 1248-1257, Nov. 1987.
doi:10.1109/TAP.1987.1144000

8. Warne, L. K. and K. C. Chen, "Equivalent antenna radius for narrow slot apertures having depth," IEEE Trans. Antennas Propag., Vol. 37, 824-834, Jul. 1989.
doi:10.1109/8.29376

9. Wang, T., R. F. Harrington, and J. R. Mautz, "Electromagnetic scattering from and transmission through arbitrary apertures in conducting bodies," IEEE Trans. Antennas Propag., Vol. 38, 1805-1814, Nov. 1990.
doi:10.1109/8.102743

10. Gilbert, J. and R. Holland, "Implementation of the thin-slot formalism in the finite-difference EMP code THREDII," IEEE Trans. Nucl. Sci., Vol. 28, No. 6, 4269-4274, Dec. 1981.
doi:10.1109/TNS.1981.4335711

11. "An improved formalism for FDTD analysis of thin-slot problems by conformal mapping technique," IEEE Trans. Antennas Propag., Vol. 51, No. 9, 2530-2533, Sep. 2003.
doi:10.1109/TAP.2003.816382

12. Gkatzianas, M. A., "The Gilbert-Holland FDTD thin slot model revisited: An alternative expression for the in-cell capacitance," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 5, 219-221, May 2004.
doi:10.1109/LMWC.2004.827843

13. Wang, B.-Z., "Enhanced thin-slot formalism for the FDTD analysis of thin-slot penetration," IEEE Microw. Guided Wave Lett., Vol. 5, No. 5, 142-143, May 1995.
doi:10.1109/75.374078

14. Xiong, R., B. Chen, Q. Yin, and Z.-Y. Cai, "Improved formalism for the FDTD analysis of thin-slot penetration by equivalence principle," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 655-657, 2011.
doi:10.1109/LAWP.2011.2160519

15. Harington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-Hill, 1961.

16. Booysen, A. J., "Aperture theory and the equivalence theorem," IEEE Antennas and Propagation Society International Symposium, Vol. 2, 1258-1261, Aug. 1999.

17. Booysen, A. J., "Aperture theory and the equivalence principle ," IEEE Antennas and Propagation Magazine, Vol. 45, 29-40, Jun. 2003.
doi:10.1109/MAP.2003.1232161

18. Chen, K. M., "A mathematical formulation of the equivalence principle," IEEE Trans. Microwave Theory and Techniques, Vol. 37, 1576-1581, Oct. 1989.

19. Anastassiu, H. T., "A review of electromagnetic scattering analysis for inlets, cavities, and open ducts," IEEE Trans. Antennas Propag., Vol. 45, 27-40, Dec. 2003.

20. Wu, G., X. G. Zhang, and B. Liu, "A hybrid method for predicting the shielding e®ectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1157-1169, 2010.
doi:10.1163/156939310791585972

21. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

22. Wilton, D., S. Rao, A. Glisson, D. Schaubert, O. Al-Bundak, and C. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains ," IEEE Trans. Antennas Propag., Vol. 32, 276-281, May 1984.
doi:10.1109/TAP.1984.1143304

23. Hodges, R. E. and Y. Rahmat-Sarnii, "Evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave and Optical Technology Letters, Vol. 14, No. 1, 9-14, Jan. 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

24. Caorsi, S., D. Moreno, and F. Sidoti, "Theoretical and numerical treatment of surface integrals involving the free-space Green's function," IEEE Trans. Antennas Propag., Vol. 41, 1296-1301, Sep. 1993.
doi:10.1109/8.247757

25. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., Vol. 41, 1448-1455.
doi:10.1109/8.247786

26. Sievers, D., T. F. Eibert, and V. Hansen, "correction to `on the calculation of potential integrals for linear source distributions on triangular domains'," EEE Trans. Antennas Propag., Vol. 53, 3113, Sep. 2005.
doi:10.1109/TAP.2005.854549

27. Ogdanov, F. G., R. G. Jobava, and S. Frei, "About evaluation of the potential integrals for near field calculations in MoM solution to EFIE for triangulated surfaces, Direct and inverse problems of electromagnetic and acoustic wave theory," Proceedings of the 7th International Seminar/Workshop on DIPED, 113-117, 2002.