Vol. 27
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-08
Numerical Investigation on Dynamic Radar Cross Section of Naval Ship Considering Ocean Wave-Induced Motion
By
Progress In Electromagnetics Research M, Vol. 27, 11-26, 2012
Abstract
In design phase of naval ships, the effectiveness of RCS reduction means such as shaping, shielding and applying radar absorbing materials is assessed quantitatively via several times of numerical analyses. During the process, in general, the numerical analyses have been carried out only for the static case not considering ship motions in actual ocean environments in spite that ocean waves induce the ship motion of the object naval ship and distort RCS measures. In this study, the dynamic RCS characteristics of the naval ship considering the ocean wave-induced motion have been numerically investigated. For this purpose, a dynamic RCS analysis procedure so called ``quasi-static approach'' has been adopted for considering the time varying ship motion. The results for two types of naval ships, a stealthy and a non-stealthy ship, show that the RCS of the object naval ships could be reduced or increased in mean value by the ship motion due to the ocean wave, compared to the static RCS value, and also the measures are considerably affected by the various parameters, type of object ship, significant wave height and incident angle of ocean wave, and incident angle of radar wave.
Citation
Kookhyun Kim Jin-Hyeong Kim Yun-Hwan Kim Dae-Seung Cho , "Numerical Investigation on Dynamic Radar Cross Section of Naval Ship Considering Ocean Wave-Induced Motion," Progress In Electromagnetics Research M, Vol. 27, 11-26, 2012.
doi:10.2528/PIERM12101211
http://www.jpier.org/PIERM/pier.php?paper=12101211
References

1. Upson, C., I. McKenna, and K. Figg, "Test plan for full-scale radar signature measurements,", BAE Systems, YD1484/RCS/TR.B10/v1, 2001.
doi:10.1109/19.50445

2. Tice, T. E., "An overview of radar cross section measurement," IEEE Transaction on Instrumentation and Measurement, Vol. 39, No. 1, 205-207, 1990.
doi:10.1002/mop.21932

3. Ojeda, J. F., J. L. Rodriguez, I. Garcia-Tunon, and F. Obelleiro, "Experimental verification of the relation between the radar cross section and the list angle of surface vessels," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2237-2241, 2006.
doi:10.1109/TGRS.2006.880631

4. amil, K. and R. J. Burkholder, "Radar scattering from a rolling target floating on a time-evolving rough sea surface," IEEE Transaction on Geoscience and Remote Sensing, Vol. 44, No. 11, 3330-3337, 2006.

5. Kim, K. , J. H. Kim, T. M. Choi, Y. H. Kim, and D. S. Cho, "A study on a dynamic radar cross section analysis technique for a surface warship," Journal of Ocean Engineering and Technology, Vol. 23, No. 6, 77-81, 2009.

6. Kim, K. , D. S. Cho, and J. H. Kim, "High-frequency back-scattering cross section analysis of rotating targets," Journal of the Korea Institute of Military Science and Technology, Vol. 10, No. 3, 16-24, 2007.

7. Lewis, E. V., Principles of Naval Architecture (Vol. III): Motions in Waves and Controllability, 3rd Ed., Society of Naval Architects and Marine Engineers, New York, 1988.

8. MOERI, "User's guide of ship seakeeping analysis program (MOTNHW),", Ver. 2.0, KORDI, 2002.
doi:10.3744/JNAOE.2012.4.1.020

9. Kim, K., J. H. Kim, T. M. Choi, and D. S. Cho, "Development of radar cross section analysis system of complex marine targets," International Journal of Naval Architecture and Ocean Engineering, Vol. 4, No. 1, 20-32, 2012.

10. Pµerez, T. and M. Blanke, "Simulation of ship motion in seaway,", Technical Report EE2037, University of Newcastle, 2002.
doi:10.1016/j.oceaneng.2009.05.005

11. Kim, K., J. H. Kim, and D. S. Cho, "Radar cross section analysis of marine targets using a combining method of physical optics/geometric optics and a Monte-Carlo simulation," Ocean Engineering, Vol. 36, No. 11, 821-830, 2009.
doi:10.1007/978-1-4684-9904-9

12. Knott , E. F., M. T. Tuley, and J. F. Shaeffer, Radar Cross Section,, 2nd Ed., Artech House Publisher, 1993.
doi:10.3744/SNAK.2005.42.2.159

13. Kim, K., J. H. Kim, and D. S. Cho, "RCS analysis of complex structures using object precision method," Journal of the Society of Naval Architects of Korea, Vol. 42, No. 2, 159-164, 2005.