Vol. 28
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-01-17
Effects of Antenna Design Parameters on the Characteristics of a Terahertz Coplanar Stripline Dipole Antenna
By
Progress In Electromagnetics Research M, Vol. 28, 129-143, 2013
Abstract
This paper presents the antenna design parameter dependency on the impedance and radiation characteristics of a terahertz coplanar stripline dipole antenna. The antenna response is numerically investigated by applying a semi-infinite substrate and by generating a constant voltage source to drive a signal on the antenna. In this way, we can analyze the antenna characteristics without the photoconductive material response and the substrate lens geometrical effects. Further, we explain the mechanism underlying the preferable uses of several millimeter length DC bias striplines in a typical THz coplanar stripline dipole antenna design. The antenna, consisting of a center dipole connected to long bias striplines, has a traveling wave characteristic supporting an attenuated current, rather than a resonant characteristic supporting a standing wave of current. The traveling wave behavior produces stable antenna input impedances and minimal changes in the antenna radiation patterns. We also found that the length of the center dipole has a prominent effect on the antenna gain response.
Citation
Truong Khang Nguyen, and Ikmo Park, "Effects of Antenna Design Parameters on the Characteristics of a Terahertz Coplanar Stripline Dipole Antenna," Progress In Electromagnetics Research M, Vol. 28, 129-143, 2013.
doi:10.2528/PIERM12112401
References

1. Jayaraman, S. and C. H. Lee, "Observation of three photon conductivity in CdS with mode locked Nd: Glass laser pulse," J. Appl. Phys., Vol. 44, No. 12, 5480-5482, 1973.
doi:10.1063/1.1662180        Google Scholar

2. Lee, C. H., "Picosecond optoelectronic switching in GaAs," Appl. Phys. Lett., Vol. 30, 84-86, 1977.
doi:10.1063/1.89297        Google Scholar

3. Auston, D. H., "Picosecond optoelectronic switching and gating in silicon," Appl. Phys. Lett., Vol. 26, 101-103, 1975.
doi:10.1063/1.88079        Google Scholar

4. Auston, D. H., K. P. Cheung, and P. R. Smith, "Picosecond photoconducting Hertzian dipoles," Appl. Phys. Lett., Vol. 45, No. 3, 284-286, 1984.
doi:10.1063/1.95174        Google Scholar

5. Grischkowsky, D., I. N. Duling, III, J. C. Chen, and C.-C. Chi, "Electromagnetic shock waves from transmission lines," Phys. Rev. Lett., Vol. 59, No. 15, 1663-1666, 1987.
doi:10.1103/PhysRevLett.59.1663        Google Scholar

6. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.
doi:10.2528/PIERL07122806        Google Scholar

7. Andres-Garcia, B., L. E. Garcia-Munoz, D. Segovia-Vargas, I. Camara-Mayorga, and R. Gusten, "Ultrawideband antenna excited by a photomixer for terahertz band," Progress In Electromagnetics Research, Vol. 114, 1-15, 2011.        Google Scholar

8. Zyaei, M., A. Rostami, H. Haji Khanmohamadi, and H. Rasooli Saghai, "Room temperature terahertz photodetection in atomic and quantum well realized structures," Progress In Electromagnetics Research B, Vol. 28, 163-182, 2011.        Google Scholar

9. O'Shea, P. G. and H. P. Freund, "Free-electron lasers: Status and applications," Science, Vol. 292, 1853-1858, 2001.
doi:10.1126/science.1055718        Google Scholar

10. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research Letters, Vol. 30, 163-171, 2012.
doi:10.2528/PIERL12013107        Google Scholar

11. Wei, S., J. Weili, and J. Wanli, "Investigation of ultra-wideband electromagnetic radiation based on Si-GaAs photoconductive switches," Microw. Opt. Tech. Lett., Vol. 54, No. 4, 900-904, 2012.
doi:10.1002/mop.26683        Google Scholar

12. Maraghechi, P. and A. Y. Elezzabi, "Experimental confirmation of design techniques for effective bow-tie antenna lengths at THz frequencies," J. Infrared Milli. Terahz. Waves, Vol. 32, 897-901, 2011.
doi:10.1007/s10762-011-9805-6        Google Scholar

13. Brown, E. R., A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, "Characterization of a planar self-complementary square-spiral antenna in the THz region," Microw. Opt. Tech. Lett., Vol. 48, No. 3, 524-529, 2006.
doi:10.1002/mop.21398        Google Scholar

4. Tani, M., S. Matsuura, K. Sakai, and S. Nakashima, "Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs," Appl. Opt., Vol. 36, No. 30, 7853-7859, 1997.
doi:10.1364/AO.36.007853        Google Scholar

15. Miyamaru, F., Y. Saito, K. Yamamoto, T. Furuya, S. Nishizawa, and M. Tani, "Dependence of emission of terahertz radiation on geometrical parameters of dipole photoconductive antennas," Appl. Phys. Lett., Vol. 96, No. 21, 211104, 2010.
doi:10.1063/1.3436724        Google Scholar

16. Diao, J., F. Yang, L. Du, J. Ouyang, and P. Yang, "Enhancing terahertz radiation from dipole photoconductive antenna by blending tips," Progress In Electromagnetics Research Letters, Vol. 25, 127-134, 2011.        Google Scholar

17. Maraghechi, P. and A. Y. Elezzabi, "Enhanced THz radiation emission from plasmonic complementary Sierpinski fractal emitters," Opt. Express, Vol. 18, No. 26, 27336-27345, 2010.
doi:10.1364/OE.18.027336        Google Scholar

18. Diao, J. M., F. Yang, Z. P. Nie, J. Ouyang, and P. Yang, "Separated fractal antennas for improved emission performance of terahertz radiations," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1158-1167, 2012.
doi:10.1080/09205071.2012.710562        Google Scholar

19. Dragomana, D. and M. Dragomanb, "Terahertz fields and applications," Progress in Quan. Electron., Vol. 26, No. 1, 1-66, 2004.
doi:10.1016/S0079-6727(03)00058-2        Google Scholar

20. Van Exter, M. and D. Grischkowsky, "Characterization of an optoelectronic terahertz beam system," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 11, 1684-1691, 1990.
doi:10.1109/22.60016        Google Scholar

21. Harde, H. and D. Grischkowsky, "Coherent transients excited by subpicosecond pulses of terahertz radiation," J. Opt. Soc. Am. B, Vol. 8, 1642-1651, 1991.
doi:10.1364/JOSAB.8.001642        Google Scholar

22. BATOP GmbH, http:/www.batop.de/.        Google Scholar

23. Shafai, L. and S. Noghanian, Modern Antenna Handbook, C. A. Balanis (ed.), Chapter 9, Wiley, 2008.

24. Chen, H.-T., J.-X. Luo, and D.-K. Zhang, "An analytic formula of the current distribution for the VLF horizontal wire antenna above lossy half-space," Progress In Electromagnetics Research Letters, Vol. 1, 149-158, 2008.
doi:10.2528/PIERL07112904        Google Scholar

25. Kominami, M., D. M. Pozar, and D. H. Schaubert, "Dipole and slot elements and arrays on semi-infinite substrate," IEEE Trans. Antennas Propagat., Vol. 33, No. 6, 600-607, 1985.
doi:10.1109/TAP.1985.1143638        Google Scholar

26. Nguyen, T. K., T. A. Ho, H. Han, and I. Park, "Numerical study of self-complementary antenna characteristics on substrate lenses at terahertz frequency," J. Infrared Milli. Terahz. Waves, Vol. 33, No. 11, 1123-1137, 2012.
doi:10.1007/s10762-012-9929-3        Google Scholar

27. Nguyen, T. K. and I. Park, "Resonant antennas on semi-infinite and lens substrates at terahertz frequency," Convergence of Terahertz Sciences in Biomedical Systems, 181-193, G.-S. Park, Ed., Springer, 2012.        Google Scholar

28. Van Rudd, J. and D. M. Mittleman, "D. M. Mittleman design in terahertz time-domain spectroscopy," J. Opt. Soc. Am. B, Vol. 19, No. 2, 319-329, 2002.
doi:10.1364/JOSAB.19.000319        Google Scholar

29. Rutledge, D. B. and M. S. Muha, "Imaging antenna arrays," IEEE Trans. Antennas Propagat., Vol. 30, No. 4, 535-542, 1982.
doi:10.1109/TAP.1982.1142856        Google Scholar

30. Tonn, D., "Radiation patterns of standing wave and traveling wave microstrip dipoles,", Master's Thesis, University of Connecticut, 1994.        Google Scholar

31. Coleman, C., An Introduction to Radio Frequency Engineering, 258-259, Cambridge University Press, 2004.
doi:10.1017/CBO9780511801327